
Hannes Weissteiner, BSc

CRACKPIPE

Covertly Reconstructing Arbitrary Code tracKs using

Per-Instruction Performance-counter Evaluation

MASTER’S THESIS

to achieve the university degree of

Diplom-Ingenieur

Master’s degree programme: Information and Computer Engineering

submitted to

Graz University of Technology

Advisors

Stefan Gast

Daniel Gruss

Institute of Applied Information Processing and Communications

Graz, April 2024

AFFIDAVIT

I declare that I have authored this thesis independently, that I have not used
other than the declared sources/resources, and that I have explicitly indicated
all material which has been quoted either literally or by content from the
sources used. The text document uploaded to TUGRAZonline is identical to
the present master’s thesis.

Date, Signature

Acknowledgements

Firstly, I would like to thank my advisors Stefan Gast and Daniel Gruss for all the
discussions and brainstorming sessions.
Special thanks to Luca Wilke, for helping with the SEV-Step setup and getting it to

work reliably on our systems.
I also thank Sebastian Felix for his help with debugging and proofreading, as well as

motivating me to finish this thesis.
Additionally, I am thankful to Lena Heimberger and Andreas Kogler for their support

and for motivating me to finish this thesis.
I thank everyone at LosFuzzys for providing an environment that allowed me to further

my interest and knowledge in information security. Thank you all for the insightful
discussions, long nights in the Lab, and fun adventures we had.

I would also like to extend a special thanks to my parents, who have always supported
me throughout my studies.

Lastly, I am grateful to my girlfriend Michelle for her unwavering support and under-
standing, even when I returned home late after a long night at the FuzzyLab.

iii

Abstract

AMD SEV is a processor extension that has been introduced to provide cloud customers
with integrity and confidentiality guarantees in a shared hosting environment. Encryption,
combined with access restrictions, ensures that a cloud provider cannot access or modify
customer data. For this purpose, SEV and its extensions ES and SNP enable a variety
of new features to limit the capabilities of a potentially malicious hypervisor. In this
thesis, we demonstrate that some processor performance statistics available to privileged
attackers can be used to break the system’s confidentiality guarantees. We present the
CRACKPIPE attack, in which a malicious hypervisor abuses performance counter differences
to leak secret data out of an SEV-SNP protected virtual machine. CRACKPIPE interrupts
the guest virtual machine after each instruction to precisely determine the outcomes of
conditional branches, and recovers secrets from the resulting trace. Therefore, despite
enabling all protection features of AMD SEV-SNP, the CPU remains vulnerable to
CRACKPIPE. In multiple case studies, we demonstrate how the underlying primitive can
be used in real-world attacks to recover keys from cryptographic algorithms, such as RSA,
or drastically reduce the time complexity of a brute-force attack. Finally, we discuss how
mitigations for CRACKPIPE impose trade-offs, such as performance overhead or limiting
the hypervisor’s ability to detect malicious guests.

Keywords: AMD, Cloud Providers, Performance Counter, SEV, SNP, Side Channel,
Single Trace, TEE, Virtual Machines

iv

Kurzfassung

AMD SEV ist eine Prozessorerweiterung, die eingeführt wurde, um Cloud-Kunden Inte-
gritäts- und Vertraulichkeitsgarantien in einer gemeinsamen Hosting-Umgebung zu bieten.
Verschlüsselung und Zugriffsbeschränkungen stellen sicher, dass ein Cloud-Anbieter nicht
auf Kundendaten zugreifen oder sie verändern kann. Um dies sicherzustellen, bieten
SEV und seine Erweiterungen ES und SNP eine Vielzahl neuer Funktionen, um die
Möglichkeiten eines potentiell bösartigen Hypervisors einzuschränken. In dieser Arbeit
wird gezeigt, dass einige Prozessorleistungsstatistiken, die privilegierten Angreifern zur
Verfügung stehen, zuverlässig gemessen werden können, um die Vertraulichkeitsgarantien
des Systems zu brechen. Wir stellen den CRACKPIPE-Angriff vor, bei dem ein böswilliger
Hypervisor Unterschiede in Performance-Countern missbraucht, um geheime Daten aus
einer SEV-SNP-geschützten virtuellen Maschine zuverlässig zu extrahieren. CRACKPIPE
unterbricht die virtuelle Gastmaschine nach jeder Instruktion, um die Ergebnisse von
Conditional Branches genau zu bestimmen, und extrahiert sicherheitsrelevante Daten
aus den resultierenden Messwerten. Daher bleibt die CPU trotz Aktivierung aller Schutz-
funktionen von AMD SEV-SNP anfällig für CRACKPIPE. Mehrere Fallstudien zeigen, wie
das zugrundeliegende Primitiv in realen Angriffen verwendet werden kann, um Keys
von kryptographischen Algorithmen wie RSA wiederherzustellen oder die Zeitkomple-
xität eines Brute-Force-Angriffs drastisch zu reduzieren. Abschließend wird diskutiert,
dass die Verteidigung gegen CRACKPIPE mit Kompromissen verbunden ist, wie z.B. der
Einschränkung der Fähigkeit des Hypervisors, bösartige Gäste zu erkennen, oder einem
Performance-Overhead.

Schlagwörter: AMD, Cloud Anbieter, Performance Counter, SEV, SNP, Side Channel,
Seitenkanal, Single Trace, TEE, Vertrauenswürdige Ausführungsumgebung, Virtuelle
Maschinen

v

Contents

1. Introduction 1
1.1. Motivation . 2
1.2. Structure of this Document . 3

2. Background 4
2.1. Virtualization . 4
2.2. Software Guard Extensions (SGX) . 5
2.3. Secure Virtual Machine (SVM) . 8

2.3.1. Basic Operation . 9
2.3.2. Nested Paging . 9

2.4. Secure Memory Encryption (SME) . 11
2.5. Secure Virtual Machine (SEV) . 11
2.6. Encrypted State (ES) . 12
2.7. Secure Nested Paging (SNP) . 14
2.8. Existing Attacks on SEV . 16

2.8.1. Register-Based Attacks . 16
2.8.2. Memory-based Attacks . 17
2.8.3. Other attacks . 20

2.9. SEV-Step . 21
2.9.1. Communication between kernel- and userspace 22
2.9.2. Supported functionality . 22

3. Attack Primitives 23
3.1. Page-Fault Tracking . 23
3.2. Single-Stepping . 24
3.3. Timing Analysis . 25
3.4. Performance Counters . 26

4. Implementation 27
4.1. Single-Stepping . 27
4.2. Performance Counters . 29
4.3. The CRACKPIPE Attack . 31

4.3.1. Gathering Traces . 31
4.3.2. Recovering secrets . 32

5. Evaluation 35
5.1. Toy Example . 35

vi

Contents

5.2. 64-bit Square-and-Multiply in Assembly 37
5.3. 2048-bit Textbook RSA Decryption . 39
5.4. Mbed TLS RSA Key Recovery . 43
5.5. TOTP Brute Force Attack . 44
5.6. TOTP Secret Recovery . 46

6. Discussion 49
6.1. Attack Scope . 49
6.2. Impact . 50
6.3. Defenses . 52

6.3.1. Disabling Performance Counters 52
6.3.2. Detection through Instruction Delays 53

7. Conclusion 54

Bibliography 56

A. Code listings 62

vii

Chapter 1.

Introduction

Cloud providers play a huge role in modern computing. Moving away from local in-
frastructure to cloud services has numerous advantages: It relieves local administrators
from having to deal with hardware issues and having to care about hardware upgrades.
Furthermore, it allows quick scaling of resources to meet demand while minimizing waste
of computing power during downtimes. Lastly, up-front costs for servers and networking
setups are eliminated. Usually, machines running in a cloud instance are virtualized,
which enables them to be moved dynamically between physical machines, depending
on demand and load. Virtual machines are controlled by a Hypervisor, which runs
at a higher permission level than the kernel of the virtual machine. The hypervisor
manages access to the underlying hardware between multiple Virtual Machines (VMs),
virtualizing hardware features and managing access to privileged resources. Traditionally,
the hypervisor can access all data in a virtual machine, including register values, memory,
and storage. As a result, traditional cloud computing requires trust in the provider, as
all secrets are accessible to them.

This makes traditional virtual machines unsuitable for handling sensitive, critical data.
To solve this issue, hardware vendors came up with solutions that would limit hypervisor
access. Technologies like Intel Secure Guard Extensions (SGX), ARM TrustZone, and
AMD Secure Encrypted Virtualization (SEV) provide a Trusted Execution Environment
(TEE), which is supposed to protect secrets from malicious physical and software access.

In this work, we focus on AMD SEV, using the latest extension called Secure Nested
Paging (SNP). In contrast to others, AMD encrypts complete virtual machines in a way
that is supposed to prevent the hypervisor from obtaining any information on their data.
The bootstrapping process is as follows: The user can upload a VM image, complete the
attestation process to make sure the hardware is genuine and has not been tampered
with, and then supply either the sensitive data or the decryption key for it [6]. In this
process, the guest owner can provide a guest policy, in which they can configure some
settings for the virtual machine. AMD specifies that they do not protect hypervisors from
fingerprinting software in the guest via performance counters or page access tracking.
AMD argues that attackers gaining information about the executed code is not critical
because sensitive information is stored as data, not code [6].

In this thesis, we show that this assumption does not hold. Using single-stepping, we
obtain detailed information about the execution inside the VM. We leak sensitive data
from the VM by observing performance counters, which AMD has explicity declared as
non-critical [6]. We show that, in some cases, an attacker is able to recover private keys

1

Chapter 1. Introduction

by observing performance counters during cryptographic computations. Even though
information about the state inside the guest is limited, we show that attacks can be
targeted precisely, with multiple redundant methods to ensure our assumptions are
correct.

1.1. Motivation

Many previous attacks on AMD SEV rely on the ability to observe and modify unencrypted
register states [31, 76] or the ability to modify or remap guest physical pages [31, 23, 51,
40, 77]. Through changes introduced by the SEV extensions Encrypted State (ES) and
Secure Nested Paging (SNP), these types of attacks are mitigated by design. To mitigate
attacks that leak data by observing the encrypted register state [42], AMD introduced
the VMSA Register Protection feature. Other attacks use CPU bugs to exploit encrypted
guests [82] or rely on noisy power measurements to exfiltrate data [73].
In contrast, CRACKPIPE uses performance counters, a legitimate CPU feature, to leak

data from an encrypted guest virtual machine in a single trace. It achieves an instruction-
level resolution for this data by single-stepping the guest. While single-stepping an
SEV guest without its consent is not an intended feature of AMD SEV, it is achievable
using APIC functionality. Additionally, we use page faults to improve reliability further.
Since these three primitives are legitimate features used in a new way, mitigations for
CRACKPIPE will require tradeoffs between multiple factors like security of host and guest,
manageability of system load, and performance.

Contributions

1. We show that even though AMD has declared performance counters and page
tracking as not problematic from a security standpoint, we can obtain information
about data inside the VM using those primitives.

2. We show how different techniques can be combined to efficiently mount an end-to-
end attack.

3. We recover a 4096-bit private key from a program decrypting a ciphertext using
Mbed TLS in a single trace within 8 minutes using this attack.

4. We show how CRACKPIPE can be used for brute-forcing TOTP tokens in an average
of 30 attempts.

5. We recover the secret from a TOTP in a single trace.

6. We discuss potential mitigations and their drawbacks.

2

Chapter 1. Introduction

1.2. Structure of this Document

Chapter 2 explains how SEV and its extensions work and gives an overview of existing
attacks on SEV and other trusted execution environments. In Chapter 3, we explain the
different primitives used by the attack. Chapter 4 details how we implement the different
primitives and the actual attack. In Chapter 5, we present example victim programs and
discuss which factors play into the reliability of the attack. Chapter 6 discusses possible
mitigations for this attack. Chapter 7 concludes.

3

Chapter 2.

Background

2.1. Virtualization

Virtualization is a technology that allows multiple VMs to run on the same host machine,
each seemingly independent of the other. This process involves emulating and virtualizing
underlying hardware, like memory, CPU-internal timers, PCI-, or other IO devices. The
hypervisor manages and allocates resources for the whole machine. It, therefore, operates
at a higher permission level than the kernel of each VM. The hypervisor is responsible
for distributing the available system resources between all VMs and deciding when to
schedule each guest. While it is possible to abstract a system in a way so that it behaves
almost exactly like real hardware, making the guest oblivious to the fact it is being
virtualized (full virtualization), a more efficient approach is to use paravirtualization.
With paravirtualization, the guest is aware of the virtualization and cooperates with the
hypervisor using hypercalls to improve performance and reliability [52]. Hypercalls are a
mechanism similar to system calls; however, instead of calling the guest’s kernel, they
call the hypervisor.
Virtualization usually works by limiting the virtual machine’s ability to interact

with hardware components and configuration. This is achieved by trapping privileged
instructions and delegating them to the hypervisor. After verifying the guest’s permissions,
the hypervisor can then either run the instructions or emulate them. While some
techniques, like binary patching, enable this functionality in software only [62], hardware-
assisted virtualization is the norm nowadays [67, 64]. Processors that support hardware-
assisted virtualization provide specific instructions, registers, and functionalities to
enable efficient and selective trapping of privileged instructions and configuration of the
processor’s behavior. Different instruction sets implement these features in different ways.
In the case of x86-64 CPUs, Intel and AMD provide different extensions for hardware
virtualization.

While Intel’s Virtual Machine Extensions (VMX) and AMD’s Secure Virtual Machine
(SVM) have similar principles of operation, their implementation differs in multiple places.
Both have different instructions for interacting with VMs, various extensions and features,
and different hypercall instructions. This work focuses on SVM, and more specifically
the SEV mode with the SNP extension.

4

Chapter 2. Background

2.2. Software Guard Extensions (SGX)

Intel’s SGX is a set of extensions to the x86 64 architecture on supported Intel processors
that allows users to execute code on an untrusted remote machine while protecting secrets
[18]. SGX achieves this by executing code in a secure enclave. The computation within
the enclave is safeguarded against interference from the operating system and hypervisor.
The integrity of the enclave is verified using an attestation process.

Processors that support SGX reserve a special memory region known as Processor
Reserved Memory. This memory region is protected against all non-enclave accesses
by the hardware. The system loads the initial data into the enclave when starting the
enclave. This process is performed by untrusted software, which can see and interact with
the initial data. However, during the attestation process, users can verify the integrity of
the initial enclave data using a hash.

The enclave can be enetered from userspace by executing the newly introduced EENTER

instruction. When an interrupt occurs, SGX performs an Asynchronous Enclave Exit.
During such an asynchronous exit, the CPU saves the state of the enclave and clears
register values before exiting the enclave. Afterward, the operating system can handle
the interrupt. To transfer control back to the enclave, the process running the enclave
uses the ERESUME instruction.
In contrast to SEV, which encrypts an entire virtual machine, SGX enclaves are

designed to contain only the most security-critical parts of a program. This approach has
the advantage of a smaller codebase inside the enclave, which makes it easier to maintain
and audit for security issues. However, attackers are also aware of the precise location of
the victim’s secrets.
Since its introduction, SGX has been the target of numerous attacks. Since many

of the principles behind these attacks also apply to SEV, we discuss some of them in
the following section. We only consider attacks that do not rely on faulty software
implementations, such as buffer overflows or logic errors, in the program running inside
the enclave.

Attacks on SGX

New attack vectors emerge in an environment where the operating system is considered
malicious. One such type of attack is called controlled-channel attack [80]. Controlled-
channel attacks leak secret data from secret-dependent memory access patterns. Attackers
can gather access information by unmapping the pages that will be accessed in the enclave,
which requires operating system privileges. When a memory access occurs, the operating
system recieves a page fault event that contains information about which page was
accessed. Depending on the specific program, this information can be used to leak secret
keys. In a traditional model, the operating system can always read the entire system
memory. Therefore, this side channel was not relevant before. However, it becomes a
valid attack on a TEE.

As a follow-up to this attack, Van Bulck et al. [71] discovered a method for monitoring
memory accesses without generating page faults. They introduced two primitives: One

5

Chapter 2. Background

primitive monitors the accessed and dirty bits in the page tables of the target page to
determine if there was a memory read or write on that page. The other primitive makes
use of the fact that accessing a memory location loads it into the cache. As demonstrated
by Flush+Reload [81], it is possible to determine if a memory location was accessed
by flushing a cache line and later measuring the access time between the flush and the
measurement. The measured access time is lower if the memory location was accessed
between the flush and the timed reload. However, it is impossible to clear the encrypted
data pages’ caches in the enclave from the outside. Instead, the authors use the page
table access latencies to leak memory access information.
Van Bulck et al. [70] also introduced SGX-Step, a framework that allows users to

single-step SGX enclaves. It also allows modifications to page table from userspace,
eliminating the need for custom syscalls to attack an enclave via controlled channels.
Single-stepping the enclave is achieved by configuring a timer to interrupt the enclave
after one instruction. They use the accessed bits of the instruction pages to distinguish
between single-steps and zero-steps. SGX-Step serves as a framework in a number of
other attacks on SGX [68, 60, 32, 50, 10]

The Nemesis attack [69] involves stepping through an enclave and measuring interrupt
latencies. The time required to handle interrupts varies depending on the execution time
of different classes of instructions. This fact is used to classify instruction types, enabling
the distinction between different code paths, even with the same number of instructions.
The Prime+Probe [56] side channel fills an entire cache set with attacker-controlled

data, evicting all other cache entries. When another process accesses memory, the
corresponding cache line is replaced with the victim’s data. The evicted portion of
the attacker’s data will have an increased access latency, thereby leaking the cache
set accessed by the victim. Unlike other cache side-channels like Flush+Reload [81],
Flush+Flush [28] and, Evict+Reload [29], Prime+Probe does not require a shared buffer.
It does not need to flush or access the data at all to leak access information.
In their CacheZoom attack, Moghimi et al. [49] used this property of Prime+Probe

to track enclave memory accesses. Some AES implementations use T-tables to improve
performance, by combining the MixColumn and SubBytes steps in a single table lookup.
They were able to recover the AES encryption keys from a SGX enclave by measuring
memory access patterns. Additionally, Prime+Probe is used in several cache-based
attacks on SGX as a means to measure microarchitectural state [27, 11, 19]

Schwarz et al. [61] also performed a cache attack using Prime+Probe. However, unlike
other attacks on SGX, their attack code was placed inside an SGX enclave. Enclaves are
designed to prevent anyone, including the operating system, from extracting the code or
data from the enclave. Therefore, the CPU prevents the host machine from detecting the
malicious code. This attack can target not only SGX enclaves but also other software
running on the system.

Other attacks on SGX include branch predictor attacks [38, 24, 32]. Branch predictor
attacks work similarly to cache attacks. However, instead of flushing or evicting cache
lines and measuring the access time to determine whether a memory location was accessed,
they attack data structures in the branch predictor unit of the CPU. Although branch

6

Chapter 2. Background

prediction performance information is not tracked inside enclaves, the branch predictor
state is still updated. If the attacker completely fills a data structure in the branch
predictor and executes the enclave, portions of the contents may be overwritten depending
on the specific instructions executed in the enclave. Attackers can then determine whether
their branch outcomes are correctly predicted by, for example, measuring execution time
or obtaining performance information from the CPU.

Sgxpectre [14] and SpectreRSB [37] demonstrate that speculative execution attacks [35]
also apply to SGX enclaves. Since SGX runs on a standard processor core, albeit with
additional security measures, performance optimizations such as branch prediction are
used. However, since the enclave memory is inaccessible to the attacker, the preparing
the branch predictor states and extracting the leaked data requires some additional steps.
Sgxpectre first poisons the Branch Target Buffer by repeatedly performing indirect jumps
from the start address to the desired address. Then, Sgxpectre drains the Return Stack
Buffer by returning several times, before entering the enclave. This forces the processor
to use the poisoned branch target buffer for branch prediction. The enclave is then forced
to speculatively access an area of shared memory to extract the data. The area that
is being accessed can then be measured using Flush+Reload, allowing the data to be
exfiltrated from the enclave.
SpectreRSB pollutes the return stack buffer by executing the CALL instruction at a

desired address, which also works speculatively. Then, SpectreRSB edits the return
address on the stack, which does not update the return stack buffer. This causes the next
RET instruction to speculatively jump to the instruction after the initial CALL. By placing
a leak gadget at this mispredicted return location, the attacker can use Flush+Reload to
leak data. This return branch misprediction works across enclave boundaries.

Although SGX protects the enclave memory from architectural reads from the outside,
internal CPU buffers may still contain secret data. Microarchitectural Data Sampling
(MDS) attacks are a class of attacks that specifically target the extraction of data from
these internal buffers.

The Rogue In-Flight Data Load [72] attack leaks data from the Line Fill Buffer (LFB)
by accessing not-yet-mapped pages, causing a page fault. The CPU speculatively uses
data from the LFB to continue execution before reverting when the page fault occurs.
This transient data can be extracted using Flush+Reload. ZombieLoad [60] extends this
primitive, and additionally leaks LFB data by inducing TSX faults, and by exploiting
microarchitectural page faults that trigger when the access bit of a page table entry is 0.
While the other MDS attacks use the LFB, which is only shared between threads on

the same core, CrossTalk [58] uses the Staging Buffer to leak data across CPU cores.
They are able to use this primitive to leak the result of the RDRAND instruction across
cores, recovering all randomness from the victim.
Plundervolt launches a fault attack at SGX enclaves by undervolting the processor

[53]. By lowering the operating voltage of the processor using dedicated MSRs, they are
able to fault power-intensive instructions like multiplication and AES-NI instructions.
They leverage the faulted multiplications by mounting a Bellcore attack on RSA [9].
With this attack, they can recover the complete encryption key. Additionally, they apply

7

Chapter 2. Background

differential fault analysis to the faulted AES instructions, which allows them to recover
the AES key of an encryption in a couple of minutes.

ÆPIC Leak is a flaw in certain Intel processors that causes read operations to return
stale data from internal CPU buffers when reading from undefined registers from the
Advanced Programmable Interrupt Controller (APIC) [10]. They find that, when reading
from the APIC, undefined data offsets are not properly cleared, resulting in reads
returning seemingly random data. The leaks correspond with data that recently traveled
through the cache structure. The authors introduce multiple techniques to manipulate
victim data to travel through caches, thereby increasing the likelihood of leaking secrets.
A notable difference between Æpic leak and other attacks on SGX is that the data leak
is entirely architectural, meaning that no microarchitectural extraction techniques such
as cache timings are required.

2.3. Secure Virtual Machine (SVM)

With SVM, AMD provides functionality that enables the hypervisor to securely and
efficiently run virtual machines with hardware assistance [7]. The behavior of SVM is
configurable using Model-Specific Registers (MSRs) (for global settings) and a Virtual
Machine Control Block (VMCB) per guest (for guest-dependent settings).
MSRs are hardware registers that are specific to processor models. They are used

to enable and configure processor features. MSR options for SVM include, e.g., which
extensions of SVM are enabled or where the host state will be saved.
The VMCB is a data structure that SVM uses for the configuration of VMs. It

consists of a continuous physical memory area and needs to be passed to the VMRUN

instruction whenever the hypervisor wants to schedule a guest. The VMCB provides
virtual-machine-specific options that the hypervisor can configure based on each guest’s
individual requirements:

Intercept type Description

Instruction intercepts Configures whether to intercept specific instructions executed
by the guest. Examples include CPUID, IRET, reads and writes
to control registers.

IOIO intercepts Configures whether to intercept the virtual machine when spe-
cific IO ports of the CPU are accessed.

MSR intercepts Configures whether to intercept the virtual machine when spe-
cific MSRs are accessed.

Exception intercepts Configures which exceptions in the guest or the host should be
intercepted.

Feature settings Configures which CPU features are enabled for the guest.

Table 2.1.: Available intercepts and settings for SVM

8

Chapter 2. Background

2.3.1. Basic Operation

To be able to run a virtual machine, the hypervisor, also called Virtual Machine Monitor
(VMM) in the documentation, first has to set up a VMCB with the chosen options and
settings for the specific guest. It then has to save its own state, move the physical address
of the VMCB to RAX, and execute the VMRUN instruction to give control to the guest.

Whenever an intercept triggers, a #VMEXIT occurs. This transfers control back to the
hypervisor, which has to save the guest state to resume that guest later. It saves some
register values to a hypervisor-defined data structure and executes the VMSAVE instruction
to save the rest of the guest state to a VM Save Area (VMSA) page.

Afterward, the hypervisor can use fields in the VMCB to determine why the #VMEXIT
was triggered. Common causes for #VMEXITs are hardware interrupts (e.g., key presses),
which the hypervisor might forward to the VM by triggering an interrupt in the guest.
The hypervisor achieves this using specific fields in the VMCB. Other common #VMEXIT

reasons include interactions with hardware (real or virtualized) or configuration changes
by the guest (e.g., MSR reads/writes). In those cases, the hypervisor can set the guest
registers to the correct values in the VMSA and resume the virtual machine.
The hypervisor can resume the virtual machine by executing the VMLOAD instruction,

restoring the remaining registers, and calling the VMRUN instruction to enter the guest.

2.3.2. Nested Paging

Modern processors use paging to separate the memory of different user processes. They
create a continuous virtual address space for each process by mapping physical pages to
the correct location in the process’s address space. When looking for a specific virtual
address, the processor walks through the page table levels to find the corresponding
physical address. This allows the same virtual address to point to two physical pages in
different processes.
Another address translation layer is introduced to achieve a similar separation for

VMs. AMD calls this nested paging. It follows the same principle: Every Guest Physical
Address (gPA) is mapped to a system physical address using a Nested Page Table (nPT).
A graphic representation of this process can be seen in Figure 2.1. Therefore, every
virtual machine has its own physical address space and cannot access the memory of
other VMs or the host machine.
Whenever a process in a guest accesses an address, the processor tries to find it by

using the Guest Page Table (gPT). Due to the fact that the addresses for the gPT are
gPAs, it has to look up every level in the nPT to find the actual location in physical
memory.
In SVM, the gPT has the same layout as standard page tables. Therefore, the

hypervisor can use the same bits (e.g., writable, No eXecute (NX), accessed) to
control and monitor the guest like a kernel could a normal process.
However, SVM itself does not protect the guest from a malicious hypervisor in any

form. Although VMs are isolated from each other, the hypervisor can access the entire
guest address space. The hypervisor can read and modify registers, inject code, and

9

Chapter 2. Background

cr3 hL4 hL3 hL2 hL1

gL4 hL4 hL3 hL2 hL1

gL3

gL2

gL1

hL4 hL3 hL2 hL1

hL4 hL3 hL2 hL1

hL4 hL3 hL2 hL1 data

Guest page
table entries

Hypervisor page table entries

Figure 2.1.: Address translation with nested paging (c.f. [8]).

generally do everything the guest kernel can do in the virtual machine. As a result, a
trusted hypervisor is required, which might not always be guaranteed in a cloud hosting
scenario.

10

Chapter 2. Background

2.4. Secure Memory Encryption (SME)

Modern server-grade AMD CPUs support the Secure Memory Encryption (SME) feature,
which allows the kernel to mark pages as encrypted by setting a special bit within the
page table [33]. The pages are then encrypted with AES-128 using an AES key randomly
generated on each system boot. SME uses a coprocessor on the chip, the AMD Secure
Processor, as a trusted device running signed, trusted AMD firmware to manage keys
and run security-critical functions. Encryptions and decryptions are performed in the
Memory Management Unit (MMU) using transparent encryption. This means the kernel
does not need to take any explicit action to encrypt or decrypt the data.
Although this encryption does not protect the memory against access by a malicious

operating system, it mitigates data recovery through physical probing of DRAM modules.
Additionally, since memory encryption is enabled using the page tables, a simple memory-
scanning tool cannot recover unencrypted data. Therefore, while SME cannot fully
protect against a malicious machine owner running custom kernels, it can protect against
simple memory dumping attacks from a rogue system administrator.

2.5. Secure Virtual Machine (SEV)

AMDs SEV is a step towards protecting the virtual machine from the host. SEV is an
extension to the SVM architecture that uses the same memory encryption engine as SME.
One crucial feature of SEV is that, unlike SME, it uses multiple encryption keys.

If SEV is enabled, each virtual machine has a private and unique key managed by the
Secure Processor. Each key is mapped to a virtual machine using the Address Space
ID (ASID). This means that even though the hypervisor can access guest page data, it
cannot decrypt it without the cooperation of the Secure Processor (SP). Additionally,
the hypervisor cannot trivially perform targeted modifications of the guest data, as any
change in the ciphertext of a guest will lead to (ideally) unpredictable changes in the
plaintext.
SEV’s memory encryption encryption protects confidential information stored in the

guest’s physical memory from being easily accessed by the hypervisor. Since the data
is encrypted on disk and only decrypted when the virtual machine runs, the guest is
protected against targeted modifications of code or data pages.

SEV provides an attestation process to allow the guest owner (the customer) to verify
the correct virtualization settings and operation of the virtual machine. During the
startup process of the virtual machine, the SP checks the status of the processor and the
guest virtual machine and creates an attestation report for the guest owner. This report
contains data like microcode and firmware versions, hardware identifiers and settings. It
is signed by the SP using a processor-specific key, which is verified by an AMD certificate
chain. The guest owner can check if the attestation report matches the customer’s desired
security policy. The SP then provides them with a secure channel to the virtual machine,
which they can use to transfer secrets like disk encryption keys. However, if the owner

11

Chapter 2. Background

decides not to trust the virtual machine, for example, due to insecure virtualization
settings or outdated firmware versions, the virtual machine will not proceed to launch.

2.6. Encrypted State (ES)

The Encrypted State (ES) extension for AMD’s SEV introduces encryption for register
states. On every #VMEXIT, register values are encrypted and saved to a dedicated area in
the VMSA. This dramatically reduces the information leakage through registers.
However, the hypervisor cannot inspect registers to determine why a #VMEXIT has

occurred. This is why SEV-ES introduces a new interrupt type for the guest and a new
way of handling some types of interrupts and #VMEXITs:

Whenever the hypervisor requires information from the host to handle a #VMEXIT

(e.g., nested page faults, MSR accesses or IO operations), a VMM Communication
Exception (VC) is triggered in the guest. The guest can write data to the Guest-Host
Communication Block (GHCB) to provide the hypervisor with the necessary information.
The GHCB is an unencrypted memory area reserved specifically to pass information
between the guest and host. In order to trigger the actual #VMEXIT, SEV-ES introduces
a new instruction called VMGEXIT, which allows the VC handler to pass execution to the
hypervisor. A flowchart of this process can be seen in Figure 2.2

This approach drastically reduces the attack surface compared to SEV without exten-
sions. However, SEV-ES does not protect against page remapping attacks as described
in Section 2.8.2.

12

Chapter 2. Background

Guest AMD64Hardware Hypervisor

Guest triggers
VMEXIT condition

Send #VC excep-
tion to the guest

#VC handler
copies state to

GHCB as needed

VMGEXIT

Save guest state to
protected memory
and load HV state

Hypervisor
handles exit

VMRUN

Load guest
state from pro-
tected memory

Returns to
#VC handler

Handler modifies
state as needed

IRET

Figure 2.2.: SEV-ES #VMEXIT flowchart [7, p. 598].

13

Chapter 2. Background

2.7. Secure Nested Paging (SNP)

AMD introduced the SNP extension as a way to to mitigate issues caused by the fact that
the hypervisor can modify mappings in the nPT and write to encrypted guest physical
pages.

To achieve this, AMD introduced a new system-wide data structure: the Reverse Map
Table (RMP). This table contains information on how specific physical pages can be
used. This includes information on whom a page belongs to, where it is supposed to be
mapped in guest physical memory, various configuration options, and a Validated bit.

When enabled, this structure is initialized during boot in cooperation with the Secure
Processor, and imposes additional restrictions during page accesses.

The newly introduced page access checks that may be performed are the following [7,
p. 608-609]:

RMP-Covered: Checks that the target page is covered by the RMP. A page is covered
by the RMP if its corresponding RMP entry is below RMP END. Any page not covered by
the RMP is considered a hypervisor-owned page.

Hypervisor-Owned: Checks that if the target page is covered by the RMP then
the Assigned-bit of the target page is 0. If the page-table entry that specifies the sPA
indicates that the target page size is 2MB, then all RMP entries for the 4KB constituent
pages of the target page must have the Assigned-bit set to 0. Accesses to 1GB pages
only install 2MB TLB entries when SEV-SNP is enabled, therefore, this check treats
1GB accesses as 2MB accesses for purposes of this check.

Guest-Owned: Checks that the ASID field of the RMP entry of the target page
matches the ASID of the current VM.

Reverse-Map: Checks that the Guest Physical Address of the RMP entry of the
target page matches the guest physical address of the translation.

Validated: Checks that the Validated field of the RMP entry of the target page is 1.

Mutable: Checks that the Immutable field of the RMP entry of the target page is 0.

Page-Size: Checks that the following conditions are met: If the nested page table
indicates a 2MB or 1GB page size, the Page Size field of the RMP entry of the target
page is 1.
If the nested page table indicates a 4KB page size, the Page Size field of the RMP

entry of the target page is 0.

14

Chapter 2. Background

Table 2.2.: RMP memory access checks [7, p. 609].

Host/Guest
SNP
Active

Type of Access
C-
Bit

Check Fault

Host -
Data write,
Page Table Access

- Hypervisor-Owned #PF

Guest ✗
Data write,
Page Table Access

- Hypervisor-Owned #VMEXIT(NPF)

Guest ✓
Instruction Fetch,
Page Table Access

-

RMP-Covered,
Guest-Owned,
Reverse-Map,
Mutable,
Page-Size

#VMEXIT(NPF)

Validated #VC

VMPL #VMEXIT(NPF)

Guest ✓ Data write 0 Hypervisor-Owned #VMEXIT(NPF)

Guest ✓
Data write,
Data read

1

RMP-Covered,
Guest-Owned,
Reverse-Map,
Mutable,
Page-Size

#VMEXIT(NPF)

Validated #VC

VMPL #VMEXIT(NPF)

VMPL: Checks that the VMPL permission mask allows access.
According to Table 2.2, any write operation from the hypervisor to a non-hypervisor-

owned page leads to a page fault, preventing the host from modifying data in guest
physical memory. For guests with SNP enabled, the Reverse-Map check prevents the
hypervisor from exchanging pages using the nPTs and from mapping the same page
to multiple locations. These protections mitigate most memory-targeted exploits from
previous SEV versions, as shown in Section 2.8.2.

The Validated bit mitigates the possibility of the hypervisor taking over the ownership
of a page, changing the page contents, and then returning the page to the guest.
Since the RMP pages are not owned by the hypervisor but by the AMD SP, the

hypervisor can only modify RMP entries using the new RMPUPDATE instruction. This
instruction automatically causes the modified entry to get invalidated. When accessing
an invalidated page, the guest receives a VC and can decide how to handle the invalidated
page. When the guest accesses a page for the first time, it can validate it using the
PVALIDATE instruction.

In order to meet the desired integrity of SEV-SNP, the guest VM should never validate
memory corresponding to the same GPA more than once [6].

15

Chapter 2. Background

AMD recommends that the guests validate all pages at boot time and refuse to validate
pages at any other point in time. Upon an invalid page access, the hypervisor is faulty or
malicious, and the guest should react accordingly. While this approach protects against
software-side modifications of guest memory, attack vectors modifying data on the RAM
chips are not detected. There might be ways to change RMP entries without invalidating
them, e.g., fault attacks or special custom hardware. According to AMD, SNP does not
protect against attacks on the physical memory, and such attacks are considered out of
scope [6].

2.8. Existing Attacks on SEV

There are many attacks on the different versions of SEV. In this section, we highlight
some of them and look at the mitigations in place.

2.8.1. Register-Based Attacks

One of the flaws of SEV without extensions is that it does not encrypt or protect register
states. Before hardware with support for the technology was even available, Hetzelt
and Buhren [31] showed that it is possible to gain arbitrary code execution in the guest
by interacting with the guest register state. They do this with a technique similar to
return-oriented programming (ROP) [59], the difference being that the gadgets end in a
hlt instruction instead of ret. They can force the guest to jump to the target gadget
by editing the stored instruction pointer in the VMSA. By using the hlt instruction to
force a #VMEXIT, the hypervisor can craft a chain of multiple gadgets to execute arbitrary
code. This makes it possible to exfiltrate arbitrary data by creating a chain that copies
memory contents to an unencrypted memory area. Breaking KASLR to find the correct
addresses of the gadgets can be done by tracking the instruction pointer register during
faults or exceptions with known exception handler locations.

Werner et al. [76] show that access to register states allows for efficient code identification
using single-stepping. By observing the register state changes, they can accurately infer
which instructions were executed. This is a possible approach to find relevant code pages
for further attacks.
An important change when upgrading to SEV-ES is that the guest state is now

encrypted. In addition to preventing the hypervisor from reading register values, this
also limits the ability of the hypervisor to redirect control flow. The AMD SP decrypts
the register state when loading the guest state. Since the decrypted value is not easily
predictable, injecting a specific register value is difficult.
However, even with ES, SEV can still leak information about its execution or even

secrets through registers.
Li et al. [42] demonstrate an attack on the encrypted register values of the guest. They

abuse the fact that the VMSA is encrypted as independent 16-byte blocks, tweaked based
on their physical address. While this means that two different encrypted blocks cannot

16

Chapter 2. Background

be compared, the same 16-byte plaintext in the same VMSA block will always result in
the same ciphertext.
Using this property, they build a similar attack to Werner et al. [76]. They infer

information about the guest’s state by observing register changes. Applying a combination
of page tracking and single-stepping, they track the execution of the guest. They also
distinguish between different guest processes by comparing the ciphertexts of control
registers, e.g., CR3. Additionally, it is possible to build a dictionary of plaintext-ciphertext
pairs by passively collecting combinations during #VMEXITs where the guest state is
deliberately shared with the hypervisor or by actively injecting register values, e.g., using
IO operations. By strategically choosing the dictionary values, it is possible to attack
constant time cryptosystems, which they show by successfully breaking RSA and ECDSA
implementations in OpenSSL.
To mitigate this issue, AMD released a feature called VMSA Register Protection [4].

When enabled, this mitigation will obfuscate register values using a pseudo-random value.
The patch breaks the direct mapping between ciphertext and plaintext. Furthermore, it
changes the ciphertext of affected registers on every #VMEXIT, preventing attackers from
obtaining information when tracking those registers via the VMSA. The feature is only
available on AMD CPUs supporting SEV-SNP.

As of writing this thesis, since the release of this feature, no new register-based attacks
on SEV have been published.

Mitigated in SEV Version
Attack SEV SEV-ES SEV-SNP

Arbitrary control flow redirection [31] ✗ ✓ ✓

Data leak through VMSA registers [76] ✗ ✓ ✓

Fingerprinting through encrypted registers [76] ✗ ✗ ✓*
Data leaks via predictable register encryption [42] ✗ ✗ ✓*

*With VMSA Register protection feature

Table 2.3.: Overview of register-based attacks on SEV.

2.8.2. Memory-based Attacks

AMD uses AES to transparently encrypt memory pages in the MMU. To minimize the
performance penalty, they cannot use AES schemes that reuse data across ciphertext
blocks. As a result, this leaves only Electronic Code Books (ECB) as a feasible encryption
scheme. ECB has the well-known flaw that the same plaintexts will always be encrypted
to the same ciphertext, making it possible to distinguish patterns in the ciphertext (see
Figure 2.3). To mitigate this, AMD tweaks the encryption based on the host physical
address of the data.

In addition to their attack on guest registers, Hetzelt and Buhren [31] show that, even
with these tweaks, the encrypted state of a specific address stays the same. As a result,

17

Chapter 2. Background

(a) Original Image.

(b) ECB encrypted image.

Figure 2.3.: Effect of ECB on a plaintext image.

the hypervisor can replay the guest state. Because the hypervisor manages the nPT, it
can remap guest physical pages to any host physical page, thusm controlling the tweak of
the encryption. An attacker could collect encrypted data on a specific host physical page
by mapping it to an attacker-controlled guest physical page. Later, the hypervisor can
map the same host physical page to another guest physical page, overriding the original
data with the previously collected, attacker-controlled page content [23]. One of the ways
for the hypervisor to control the contents of a page is by using IO operations. Since the
hypervisor controls all IO ports, it can use them to send arbitrary data to the guest. The
guest must store the received data somewhere in its memory, which creates a page filled
with attacker-controlled data.

On the other hand, Morbitzer et al. [51] show that a similar principle can be used
to leak data from the guest’s memory if the guest machine runs any service that sends
data from memory (e.g., a website). By remapping pages, the hypervisor can force the
service to send arbitrary data from the guest’s physical address space. This is possible by
switching the page containing the response data with the target page. With this attack,
the hypervisor can leak the entire main memory contents of the guest machine.

While IO operations usually have side effects that the VM can detect, Li, Zhang, and
Lin [40] found a way to exfiltrate some data when the virtual machine is already shut
down. During the boot process of a virtual machine, the hypervisor needs to cooperate
with the SP to set up the initial memory contents of the guest, generating an encryption
key that is tied to a specific ASID. According to AMD, executing another virtual machine
with a reused ASID would lead to a crash since its memory contents were not initialized
and encrypted with this reused key. Decrypting them with it results in invalid data,
which means that gaining code execution in that address space would be prevented.

However, the authors found a way to leverage page table walks to exfiltrate data to
the hypervisor dubbed CrossLine. Since the hypervisor has complete control over the
nPTs, it can follow the page table walks of the guest. CrossLine exploits this behavior by

18

Chapter 2. Background

manipulating the guests instruction pointer in the VMSA. Through this, they can reuse
an ASID with a malicious virtual machine to leak the entire guest paging structure. With
this knowledge, they modify the attacker virtual machine’s nPT in a way that allows
them to execute encrypted instructions in the victim’s address space. By executing an
instruction that moves data from memory to a register, they can leak the entire memory
contents.
Wilke et al. [77] were able to exploit the XOR-Encrypt-XOR encryption mode used

in SEV to reuse blocks of encrypted memory in other parts of the guest address space.
SEV-ES uses the following functions to encrypt and decrypt data:

EncK(m, p) := AESK(m⊕ T (p))⊕ T (p)

DecK(c, p) := AES−1
K (c⊕ T (p))⊕ T (p)

p is the host physical address of the data, and T (p) is a tweak function that is used for
encryption. Considering a full flow of encryption and decryption:

m′ = DecK(EncK(m, p), q) = AES−K1(AESK(m⊕ T (p))⊕ T (p)⊕ T (q))⊕ T (q)

If p and q were equal, m and m′ would be the same. If the attacker had moved the
block to another location in memory (and therefore changed q), the result would be
changed.
The attack targets the insecure tweak function T . If an attacker knows T (p)⊕ T (q),

they can take this term into account when moving the data:

m′ = DecK(EncK(m, p), q) = AES−K1(AESK(m⊕T (p))⊕T (p)⊕T (q)⊕T (p)⊕T (q))⊕T (q)

m′ = DecK(EncK(m, p), q) = AES−K1(AESK(m⊕ T (p)))⊕ T (q) = m⊕ T (p)⊕ T (q)

Since the values of T can be determined, the attacker can find parts of known memory
contents m at addresses p, such that the resulting m⊕ T (p)⊕ T (q) is a useful gadget to
attack the target, for example redirecting control flow. This way, they can gain control
over the victim without any IO operations.
Li et al. [43] found that forcing a victim process to execute chosen instructions is

possible using Translation Lookaside Buffer (TLB) poisoning. This attack requires a
hypervisor-controlled unprivileged process to run inside the virtual machine. They abuse
the fact that TLB management is handled by the hypervisor. They interrupt the victim
when it is about to execute an instruction at virtual address V0. Then, they schedule
another vCPU running the attacker process and clear the TLB. They instruct the process
to run the chosen instruction at the address V0, poisoning the TLB entry for that virtual
address with the corresponding physical address. Afterward, the hypervisor schedules
the victim process again without clearing the TLB. The victim process will execute the
instruction injected into the TLB. The same primitive method is also usable for injecting
data from the victim into attacker processes. The authors show an attack that injects
the correct password hash from a legitimate SSH login process into a victim, bypassing

19

Chapter 2. Background

the password check. According to the paper, AMD stated that this attack is mitigated
in SEV-SNP. However, they do not mention how this mitigation is implemented.
When preparing the guest’s boot, the hypervisor collaborates with the AMD-SP to

load the initial binary into the encrypted guest memory. The hypervisor can upload the
binary block by block using the LAUNCH UPDATE DATA command with the SP. The guest
owner can verify the integrity of the initial data during the attestation process using
measurements provided by the SP. Wilke et al. [79] found that these measurements did
not change when they modified the order of the blocks. The uploaded blocks can be as
small as 16 bytes. By reordering the blocks in specific ways, they were able to construct
a ROP chain to execute arbitrary instructions. This allowed them to leak the secrets
sent by the guest owner after the successful attestation. SEV-SNP mitigates this issue
by increasing the minimum block size to 4KB and incorporating the block size in the
measurement value.
Li et al. [39] take the idea of CipherLeaks [42], deriving information from encrypted

memory blocks, and applies it to the entire memory space of the virtual machine instead
of only the VMSA. Since VMSA Register Protection only tweaks the VMSA before
#VMEXITs, they can mount similar attacks as presented in CipherLeaks even with the
feature enabled.

The most recent attack on SEV at the time of writing is CacheWarp [82]. CacheWarp
exploits a software-based fault attack in the cache of AMD CPUs. Specifically, they
invalidate the processor’s internal caches by using the invd instruction. In contrast to the
wbinvd instruction, invd does not write back the cache contents before invalidating. This
incoherence leads to dropped write operations, resulting in reverted memory contents.
Using single-stepping (see Chapter 4), they can precisely control which write operations
to drop. One potential attack target is authentication: For example, when exploiting the
sudo binary, they drop the write to a field in a struct, which should contain the user ID.
Since the struct is zero-initialized, and the root user on Linux systems always has the user
ID 0, sudo thinks it was launched as root and does not require further authentication.
The attack works not only on explicit write operations but also on implicit writes in the
microcode, such as the return address written to the stack during a call instruction.

Since this attack does not touch the guest memory directly and works by exploiting a
flaw in the cache implementation, it is the only memory-based attack known to exploit
SEV-SNP systems at the time.

2.8.3. Other attacks

Other attacks on SEV do not target guest registers or memory. One such attack is PwrLeak
[73]. It uses the processor’s built-in power consumption measurement functionality purely
from software to gain insight into the guest. By measuring the power consumption
of instructions, they can infer which instructions are executed by the guest and, in
some cases, even obtain information about the operands. They use these primitives to
leak JPEG files and parts of an RSA private key during processing. Since the power
consumption differences of such a measurement are very small, they employ two different
amplification strategies:

20

Chapter 2. Background

Table 2.4.: Overview of memory based attacks on SEV

Mitigated in SEV Version
Attack SEV SEV-ES SEV-SNP

Code injection via page switching [23] ✗ ✗ ✓

Data extraction via page switching [51] ✗ ✗ ✓

CrossLine [40] ✗ ✗* ✓

Code injection via predictable encryption tweaks [77] ✗ ✗ ✓

TLB Poisoning [43] ✗ ✗ ✓

Data extraction via predictable memory encryption [39] ✗ ✗ ✗

Data corruption via dropped cache writebacks [82] ✗ ✗ ✗

*Limited impact due to register encryption

Emulation-based amplification repeatedly emulates the target instructions to amplify
the power consumption (and, therefore, the difference in the consumption of other
instructions). This strategy only works on SEV without extensions since it requires
access to guest registers. However, it is the more reliable of the two strategies
The other strategy is interrupt-based amplification, which uses strategic interrupts

to force the target instruction into a time window where power measurement facilities
are updated. The authors of the attack claim that this less reliable strategy should
also work on ES and SNP. They hypothesize that the extra protections (and associated
computations and checks) would introduce more noise into the measurement, making the
side channel even less reliable than it is currently.

On the other side of power-based attacks, Buhren et al. [12] leveraged power glitching
to force the AMD-SP to accept their public key and successfully verify and boot their
self-signed payload. This way, they could gain code execution on the SP. With the ability
to run custom code, they discuss multiple possibilities to exploit a guest:

By extracting chip-specific secrets, it is possible to forge signed data in an attestation
process. It is also possible to change settings after the attestation has finished, like
enabling debug functionality. The debug functionality can usually only be enabled if the
guest allows it and allows the hypervisor to decrypt guest pages. Lastly, they could dump
the firmware of the SP. By reverse-engineering the algorithms used for key generation,
they can obtain complete knowledge of a specific CPU’s secrets. This compromises the
security of all guests running on that specific processor.

2.9. SEV-Step

Wilke et al. [78] introduced a single-stepping framework called SEV-Step, which provides
similar functionality for SEV as SGX-Step does for Intels SGX [70]. The framework
consists of a modified Linux kernel with additional features added to the kvm amd module
and libraries, allowing easy interaction with the kernel module from userspace. In addition
to single-stepping, the framework provides page tracking functionality that can be used
interactively from userspace.

21

Chapter 2. Background

2.9.1. Communication between kernel- and userspace

Implementing the final exploit in userspace and minimizing changes in kernel space has
several advantages.

Compiling and starting a new userspace program is generally faster and more straight-
forward than compiling a new kernel module. Significant changes may require a reboot
to load the new code, as a simple reload of the kernel module may not suffice. A program
in user space is compiled and linked with the SEV-Step userspace library to produce a
self-contained binary that can be executed immediately.
In contrast, a crash due to a coding error in the kernel is likely to cause a system

crash, or at least require a reboot. Keeping all experiments in the userspace means that
a crash of the exploit may lead to a stuck virtual machine, which is still recoverable
without restarting the machine. This is particularly advantageous when developing
exploit prototypes rapidly, as it reduces the need for reboots.

By definition, the interactive nature of SEV-Step requires more communication between
kernel- and userspace. The userspace library uses the ioctl syscall to communicate with
the kernel module. This interface configures the kernel’s single-stepping and page-tracking
behavior and initializes the shared memory buffer used for the rest of the communication.
The shared memory buffer transfers data from kernel- to user space. The communication
is synchronized using a spinlock on the shared memory buffer.
To guarantee that the kernel halts execution until the userspace has acknowledged

and processed an event, SEV-Step uses an ACK mechanism. Whenever an event occurs,
the kernel will acquire the spinlock on the shared memory region and write data corre-
sponding to the event to the appropriate locations. When it has finished, it will clear the
event acked flag in the shared structure and set the have event flag. Before continuing,
the kernel will wait for event acked to be set. The user space will do so after it has
finished handling the event. The userspace library will also reset the has event flag and
wait for the kernel to set it again, notifying the user space of a new event.

2.9.2. Supported functionality

The SEV-Step API provides similar functionality to SGX-Step. Since the hypervisor
controls and can freely modify the nPT, it can leverage the access bits (present, writable,
NX) to notify the attacker whenever the target accesses a specific memory location in the
chosen manner. Similar to Li et al. [41], attackers can use this functionality to obtain
information about running programs and use it much like a breakpoint in a traditional
debugger, but with coarse, page-by-page resolution. This technique allows the victim
program to run at normal speed up to the target code section, where it is interrupted
and the attacker can interactively single-step the code.
The main feature of SEV-Step is the single-stepping of SEV VMs. It can do this

interactively and gives the attacker detailed information about each step via the userspace
API. The information returned by default includes the number of steps taken and the
time it took the virtual machine to exit.

22

Chapter 3.

Attack Primitives

In this chapter, we go into the fundamental building blocks of CRACKPIPE. We show the
individual parts required for the exploit to work, providing a high-level overview of the
implementation.

3.1. Page-Fault Tracking

Page faults are exceptions triggered when memory is accessed in a way that is not allowed
for a specific memory region. Access permissions are configured in the page tables. Page
faults are relatively common and are used to implement mechanisms like on-demand
page mapping or copy-on-write. In a regular system, they are handled by the kernel.
Attackers operating with kernel privileges have permission to access any data on the
system. Thus, in the traditional model, memory accesses cannot leak any data that the
attacker cannot access already.
However, when operating in TEEs, page faults become relevant side channels. A

central principle of trusted execution is protecting secrets even when a malicious attacker
controls the rest of the system. However, both SGX and SEV are subsystems of a running
system, where they do not run at the highest permission level. In the case of SGX, the
kernel is in charge of managing system resources, while on SEV, the hypervisor manages
the hardware.
In SEV, the hypervisor can configure the access permissions on a page-by-page basis

using the nested page tables. This is required since the hypervisor must be able to
allocate pages to the guest physical address space dynamically. However, a malicious
hypervisor can use these access permissions to track the execution of specific programs
or the entire operating system.

Unsetting the present-bit on every page, every memory access on any page will cause
a #VMEXIT with a nested page fault, informing the hypervisor on which page was accessed.
The hypervisor can determine access patterns with page size granularity by resetting the
present-bit for a page until the subsequent page fault occurs. While this technique is
very slow, it allows an attacker to fingerprint the running software in a virtual machine
and find the required guest physical page numbers for subsequent attacks.

The attacker can start with more selective attacks when the required pages are known.
Depending on the attack target, the attacker may only be interested in write operations,
meaning they can remove the writable-permission on the page. In the case of a secret-

23

Chapter 3. Attack Primitives

Virtual Machine

Guest Page Table

Guest Physical Page

Guest Physical Page

Guest Physical Page

Guest Physical Page

Guest Physical Page

Guest Physical Page

Guest Physical Page

Guest Physical Page

Guest Physical Page

Nested Page Table

Physical Page

Physical Page

Physical Page

Tracked Page

Physical Page
Physical Page

Physical Page

Physical Page

Physical Page

Hypervisor

Program

1. Track Page

2. VMRUN

3. Guest
Page Lookup

4. Nested
Page Lookup

5. Nested
Page Fault

E

Figure 3.1.: Page-fault tracking overview. The tracked nested page causes a nested page
fault on access, which triggers a #VMEXIT.

dependent data access, they might only turn off the present-bit for specific pages to
recover the secret by observing the access patterns.
Another strategy is turning off the NX-bit, which means the attacker will receive an

interrupt when the guest tries to execute code from the target page [74]. These interrupts
can be used to find the entry point to a relevant part of the code without slowing down
the system until the target code is about to be executed. The attacker can then switch
to other attack primitives, like single-stepping, to have more fine-grained control over the
execution.

3.2. Single-Stepping

Single-stepping is the process of pausing the execution of a program after each instruction.
It is essential in software development, to trace the execution of any piece of code
and pinpoint the exact location where something goes wrong. Modern processors have

24

Chapter 3. Attack Primitives

Guest

Host

Timer Interrupt

Timer Start VMRUN

Instruction

Single-step window

E
Instruction

#VMEXIT Handler

Figure 3.2.: Visualization of a single-step using the APIC timer. Timer intervals are
chosen such that the interrupt hits the single-step window at the end of
VMRUN.

facilities that provide the kernel with the required functionality for efficient debugging.
In the case of Linux, the kernel provides the ptrace interface to userspace, allowing user
processes to debug each other with features like single-stepping, breakpoints, register
modification, or memory interaction. However, the kernel imposes some constraints on
which processes can be debugged by which user. Access control to debugging is essential
since it would lead to grave security vulnerabilities if any user could debug any process.
Since hypervisors are also software that needs to be programmed and debugged, the

same facilities can be used there. It is possible to cause the guest to trap after a single
instruction. The platform provides breakpoint registers, which cause a trap once the
execution reaches the chosen memory location. It is also possible to send a request to the
Platform Security Processor (PSP) to ask it to decrypt pieces of memory for debugging
purposes.
Obviously, allowing the hypervisor to read memory and registers would completely

undermine the security of SEV. To mitigate this, guest owners can turn off debugging for
their virtual machine by zeroing the DEBUG bit in the guest policy. This disables the use
of any builtin debug functionality and disallows the use of the SEV CMD DBG DECRYPT and
SEV CMD DBG ENCRYPT commands, preventing the hypervisor from decrypting memory
contents.

However, it is possible to implement a form of single-stepping (albeit less reliable) by
trying to interrupt the guest shortly after allowing it to start, only allowing a single
instruction to finish.

3.3. Timing Analysis

The duration of operations often leaks information about the CPU’s internal state, the
operation’s input data, or the operation itself. As Wilke et al. [78] showed, a Nemesis-
style timing attack [69] is possible under SEV-SNP. The interrupt latency can be used

25

Chapter 3. Attack Primitives

to distinguish different types of instructions. AMD states that preventing application
fingerprinting is out of scope for SEV. However, interrupt latencies can be used to verify
a function’s current position while single-stepping. Measuring latency incurs very little
performance overhead when single-stepping. Therefore, the measurements can confirm
that the executed code matches the expectations.

3.4. Performance Counters

Performance counters are a way for the CPU to track various performance-related
statistics. They can be used to determine application bottlenecks, identify resource-
hogging applications or functions, and even detect some types of attacks.
Some examples of the tracked information are the number of retired instructions per

core, current CPU clock speed, number of retired instructions for some specific types
(like Advanced Vector Extensions (AVX)), cache events (misses and flushes), and more.
Performance counters are only accessible by the kernel. However, the kernel can pass
performance information to the userspace for users with the correct privileges.

Contrary to Intel’s SGX, performance counters are not automatically disabled in SEV.
Since SEV runs a full virtual machine as a TEE instead of only a small enclave, it makes
sense to allow the hypervisor at least some insight into which kinds of operations the
virtual machine is performing. Since the technology is developed with cloud computing
in mind, the hypervisor has to be able to detect if a secure virtual machine is hogging
shared resources or performing some attack on other guests or the host itself.

According to AMD, preventing application fingerprinting via performance counters is
not in scope for SEV since code is usually not confidential, but data is. In the upcoming
chapters, we demonstrate that this security assessment for performance counters is
inaccurate and performance counters can actually leak information about data inside
SEV as well.

26

Chapter 4.

Implementation

In this chapter, we detail how we implemented our attack primitives. We also show how
our attack combines these primitives to leak data from a victim virtual machine.

4.1. Single-Stepping

The guest owner can turn off debugging functionality in a properly configured SEV
environment. Therefore, we develop a custom implementation of single-stepping.
The APIC provides programmable interrupt support to the operating system. This

means that the operating system can enable and configure a number of different interrupt
types which will trigger whenever the corresponding event occurs. Such events include
input/output operations, timers, performance counters, and thermal management. The
relevant interrupt type for our application is the APIC timer. The APIC timer is a
software-configurable countdown timer. The operating system can set it up by using
multiple control registers.

The kernel chooses a divider in the Divide Control Register to control the frequency of
the timer. A smaller divider means better resolution but leads to less maximum range
since the timer value decreases faster. Since we only want to start the timer before
entering the guest, we configure the timer in one-shot mode, which causes it not to restart
automatically. We move our desired value into the Current Count Register to start the
timer. The APIC then starts decrementing the counter at the configured interval and
trigger an interrupt when it reaches 0. We configure the settings by writing them to the
memory-mapped APIC configuration area.
By configuring the timer to interrupt the core at a specific point after the VMRUN

instruction, we can to single-step the guest. The specific timing depends on factors like
the current clock speed, CPU utilization, kernel- and hardware settings, and differences
in the silicon. Since the hypervisor controls the system, we can limit the impact of those
factors by fixing our clock, reserving an entire core for the target virtual machine, and
choosing the ideal kernel- and hardware parameters.
The attacker can profile the hardware in advance to account for potential differences

between processors. The timer value required for consistent single-stepping during our
experiments remained constant.

We configure and start the timer as late as possible before executing VMRUN to minimize
latency variances caused by other instructions. We also prepare as much as possible

27

Chapter 4. Implementation

beforehand to minimize the timing overhead. We pass the prepared values into the
function as arguments. A nice side effect of this approach is the ability to use standard
Linux kernel functions and macros for most of our implementation, for example, to
determine the address of required APIC registers.

The default SEV-ES and SNP entry code, shown in Listing A.1, starts with a standard
function prologue, pushing callee-saved registers to the stack. All push instructions in
the function prologue (lines 6 to 16) can potentially have some variable timing to them,
for example, due to full internal CPU buffers or other congestion. Therefore, we want to
start the timer as late as possible.
If we only want to implement single-stepping without additional features, the ideal

place would be line 20, which is just before we enable interrupts and execute VMRUN. We
precompute the address for the current count register and pass it as an argument to
the function, along with our desired timer value. We then start the timer by writing
our desired timer value into the Current Count Register. The kernel can run the virtual
machine without single-stepping by simply passing 0 as the desired timer value since this
turns off the timer without an interrupt.

In the case of base SEV, most register values need to be manually saved and loaded by
the host during the context switch. The entry function for SEV is significantly longer
than the SEV-ES version. This makes implementing a reliable form of single-stepping
more challenging since the host has to overwrite its registers with the guest’s saved values
before the context switch. This would overwrite the precomputed values passed to the
function. Therefore, we instead start the timer before restoring all guest register values.
These memory accesses cause more variance in the delays between starting the timer and
entering the guest, which reduces the reliability of our implementation.
To mitigate this uncertainty, we start with a lower-than-necessary timer value and

retry single-stepping the guest multiple times before increasing the value. We repeat this
process until we detect a single step. However, this “automatic” search for a valid timer
value, starting with a too-small value often causes a “runaway”, i.e. the timer interrupt
is triggered before the VMRUN instruction starts. Since the code executes STI, enabling
interrupts, before VMRUN, it handles the timer interrupt before entering the guest. This
causes the virtual machine to execute freely until the next #VMEXIT occurs.

To prevent this, we had the idea to overwrite reserved SBZ (should-be-zero) bits in the
currently active VMCB, in the interrupt handler. If the interrupt triggers before VMRUN,
the instruction fails due to an invalid VMCB. The code always resets the bits to zero
before trying to enter the guest, restoring a valid state. However, to prevent unnecessary
modifications to the kernel code, we opted to provide more precise starting timer values
instead of addressing the error.
Starting with SEV-ES, the virtual machine entry code is more concise, since the

VMRUN instruction manages the guest register state. Therefore, achieving a basic form of
single-stepping is easier with ES enabled.
When experimenting with the timer values, we discovered that the required timer

value to single-step does not change based on the next instruction. For example, a heavy
CPUID instruction required the same timer value as a simple NOP. We believe that there

28

Chapter 4. Implementation

may be two potential causes for this behavior. Firstly, when a timer interrupt happens,
the CPU may still try to process all instructions in the reorder buffer before performing
a #VMEXIT. Secondly, there might be a window during the execution of VMRUN specifically,
after which the next instruction cannot be interrupted, and will finish even though a
timer interrupt has happened. Performance optimizations may cause this behavior if the
first guest instruction is allowed to execute while the VMRUN instruction is unfinished.

The second hypothesis is the most likely due to multiple reasons. First, we see distinct
steps for combinations of test and conditional jumps when single-stepping. Usually,
these combinations get fused to one macro-op, so we expect only one step for both of
them [25]. Second, the reliability of single-stepping NOP instructions seems too high for
an interrupt window with just the length of the NOP. Third, when single-stepping memory
accesses, we can only detect latency differences between cached and non-cached memory
locations if we place mfences between the memory accesses. This behavior means that
the CPU already fetches the data for future instructions that are not executed before the
#VMEXIT.
Our first proof-of-concept was developed on SEV, without the ES extension. We

monitored the RIP field in the VMSA to distinguish between single- and zero-steps. Even
with an encrypted VMSA, the ciphertext only changes if the underlying register value is
updated. Therefore, this allows us to detect changes in the instruction pointer even on
SEV-ES. However, with the VMSA Register Protection feature, this assumption does hold.
Alternatively, it may possible to employ the same strategy as SGX-Step and monitor the
accessed-bits of the nPT to detect whether instructions were fetched.
In parallel to our work, Wilke et al. [78] released their single-stepping framework

SEV-Step. They use the same basic principle of APIC interrupts to single-step guests.
However, they use the Retired Instructions performance counter to distinguish between
zero- and single-steps. This method works even with VMSA Register Protection enabled
and reports the exact number of instructions executed in a single VMRUN. Additionally,
they implemented features like page tracking and a userspace library for interactive single-
stepping and debugging. For SEV-SNP, we rely on their framework for single-stepping.
SEV-Step follows the same principle as our implementation. They achieve a reliable

single-stepping behavior by placing the timer’s start close to the VMRUN instruction.
However, their latest framework version also includes latency tracking used for their
Nemesis [69] experiments on AMD [78]. This timing analysis code uses the rdpru

instruction to obtain a high-resolution timestamp, and introduces additional delay in
form of some register arithmetic operations to compute the correct timestamp and a PUSH
to the stack. The single-stepping timing is not significantly affected by these operations.
In contrast, the noise in the timing measurements from an APIC write may be more
significant.

4.2. Performance Counters

Performance counters are a feature provided by the CPU so that the operating system
can monitor the use of certain CPU functions. Kernel-level code can select multiple

29

Chapter 4. Implementation

Figure 4.1.: PerfEvtSel register layout [7].

performance-related events via one of many PerfEvtSel MSR. This will cause the CPU
to count the occurrence of the selected event in the corresponding PerfCnt MSR. The
specific events that can be tracked depend on the processor family and can be found in
the manual for the specific processor family [5].
The layout and available fields of the PerfEvtSel register can be seen in Figure 4.1.

To use a performance counter to track a virtual machine, we set the HG ONLY field to
0x1, which makes the performance counter only track events while inside the guest and
ignore events in the hypervisor. For our attack, we do not need most of the provided
features. Configuring the counter to only track user- or kernel-space events could be
helpful for some attacks. However, since the hypervisor controls any hardware interrupts
the guest receives, it can avoid any jumps into kernel space not caused by the executed
code, rendering the filter redundant. At last, we enable the counter by setting the EN-bit
to 1.

Table 4.1.: PerfEvtSel register field description [7].

Bits Mnemonic Description Access Type

63:42 Reserved RAZ (Reads as Zero)
41:40 HG ONLY Host/Guest Only R/W
39:36 Reserved RAZ
35:32 EVENT SELECT[11:8] Event select bits 11:8 R/W
31:24 CNT MASK Counter Mask R/W
23 INV Invert Comparison R/W
22 EN Counter Enable R/W
21 Reserved RAZ
20 INT Interrupt Enable R/W
19 Reserved RAZ
18 EDGE Edge Detect R/W
17 OS Operating-System Mode R/W
16 USR User Mode R/W
15:08 UNIT MASK Unit Mask R/W
07:00 EVENT SELECT[7:0] Event select bits 7:0 R/W

30

Chapter 4. Implementation

SEV-Step by default uses event 0x0C0, Retired Instructions, to track how many
instructions have been executed during one VMRUN. This works by computing the difference
between the instruction count before and after the VMRUN. For our attack, we added
tracking for event 0xC2 (Retired Branch Instructions), and 0xC4 (Retired Taken Branch
Instructions). On every single step, the difference between the count before and after the
VMRUN is sent to the userspace for evaluation via SEV-Step’s shared memory buffer. While
the Retired Conditional Branch Instructions event exists and would ignore unconditional
branch instructions like JMP, CALL, and RET, these known taken branches can be used for
orientation in the code.

In the future, a similar attack using other performance events could use leaks that do
not depend on conditional branches. Candidates for such events are Div Cycles Busy
Count combined with Div Op Count, which would leak the order of magnitude of the
result of the division. In addition, performance counters that track cache events could be
used to side-channel data across cores.

4.3. The CRACKPIPE Attack

CRACKPIPE reveals secret information if the victim uses the secret data for branching
decisions. The attack consists of two phases. In the first phase, our attacker program
uses our extended version of SEV-Step to generate a trace of the victim program. The
trace includes information about all branch outcomes in the single-stepped section. In the
second phase, combining this data with knowledge of the executed code can potentially
recover data used for branching decisions. This second phase is completely offline and
requires only a single trace.

4.3.1. Gathering Traces

Since we use the framework provided by Wilke et al. [78], the general format of the trace
gathering tool is inspired by the examples in their public repository.
According to Li et al. [41], it is possible to identify pages in memory by observing

page access patterns. We argue that we can confidently determine the correct pages
when combining their strategy with monitoring performance counters, single-stepping,
and latency analysis. Therefore, we assume we know the guest physical addresses of our
attack target.

We need to know all guest physical pages of the code we target for our attack. We can
single-step a whole function or only parts of it, with a page-size granularity. To optimize
the performance of our attack, we want to minimize the single-stepped code. To know
when to start and stop single-stepping the program, we need to know a start- and stop
page. When single-stepping an entire function, the start- and stop pages are identical
since the target function will return to the code where it was called from when it finishes.
To start the attack, we begin by tracking execute accesses (execute-tracking) on the

start page. Unless the victim executes code from this page, this is undetectable and
has no performance impact. When the guest execution hits the start page, we track our

31

Chapter 4. Implementation

target pages instead. We start single-stepping as soon as the guest jumps to a target
page.

To optimize the performance of our attack, we want to limit single-stepping the guest
to a minimum. When we enter the target function, we start execute-tracking all guest
pages except our target pages. We continue single-stepping while recording performance
counters and step sizes. Whenever we receive a page fault on another page than our
target, we stop single-stepping, untrack all pages, and start execute-tracking solely the
target pages. This usually happens when the tracked code calls a function. Therefore,
we record this event as a function call in our data. This method allows the rest of
the program to run without any performance impact while minimizing the amount of
unnecessary data recorded.
When the called function returns, we receive a page fault on our target page. When

this happens, we start single-stepping again while recording a function return event in
our data. We also track all other pages again to prepare for the following function call.
We know our target code has finished when we receive a page fault on the stop page.
We stop single-stepping and turn off all page-tracking completely, allowing the guest to
continue running normally. We save the generated trace, which consists of single-step,
multistep, function call, and function return events, for later analysis.

We show a graphic representation of this process in Figure 4.2.

4.3.2. Recovering secrets

Once the data collection is complete, we evaluate our results offline. Our attack
program creates a JSON file containing an array of events. Each event is of one of
four types: enter victimpage pagefault, functioncall pagefault, singlestep or
multistep. Depending on the event type, they contain different fields: singlestep

and multistep events have a counted instruction field, which counts the number of
instructions executed within a single VMRUN (always 1 in case of singlestep). Step events
also contain the performance counter changes in the corresponding step as the fields
retired branches perfct and branch taken perfct. Pagefault events are primarily
present for orientation since knowing when the program has called a function is helpful.

We need the program binary to evaluate the trace since we need the exact instruction
pattern. Different compiler versions or optimization levels might cause changes, making
the program flow reconstruction impossible. Evaluation of the trace is not automatic
since it requires tailoring the code to the specific application. Creating an automated tool
for this purpose might be possible using modern disassembly tools’ scripting capabilities.
By comparing the values of retired branches perfct and branch taken perfct,

we can infer a lot of information about the execution. The execution of unconditional
branches (e.g., CALL, RET, and JMP) will cause both performance counters to increment
by one. We can use this fact to have some orientation in the code since the branch
instructions provide a fixed pattern in the data. We can also combine this with the page
fault data to have reliable information about our current location in the execution.

By leveraging this knowledge to navigate the instructions, we can leak the outcome of
any conditional branch instruction in a single trace. Since we know which instruction we

32

Chapter 4. Implementation

Figure 4.2.: Diagram of the attack phases. We first track only the target page to wait
for the call to our target. While single-stepping, we track all other pages to
detect calls to other functions. We disable single-stepping during function
calls to minimize the attack runtime.

are executing, we can find the single-step event corresponding to a conditional branch
instruction and check the branch taken perfct field. If it is 1, we know the condition
it depended on was true. If it is 0, we know the condition must have been false. We can
ensure that retired branches perfct is 1 to double-check that we are looking at the
correct instruction.

We created a custom script for Ghidra [1] to simplify this process of following the trace
through the program code. The script prompts for a trace file, the address of the first
single-stepped instruction, and a list of addresses to trace. By following the control flow
using Ghidra’s scripting API and using the single-step data to decide which branch to
take for conditional branches, we can easily reconstruct the control flow of the traced
program. The script outputs the branching conditions at the specified addresses to the
console output, facilitating for easy further analysis.

33

Chapter 4. Implementation

However, single-stepping with SEV-Step is not completely reliable. In our tests, there
was a chance that multiple instructions would execute in a single VMRUN, resulting in a
multi-step.

We can still try to recover since we know how many instructions were executed in a
multi-step. Our chances of recovering from a multi-step process depend on the type of
executed instructions.
If a multi-step contains only one unknown branch instruction, we can always recover

the outcome of the unknown branch. Since we know how many branch instructions were
executed during the multi-step and how many must have been taken, we can compute
the outcome by subtracting the known number of taken branches from the measurement.
When a multi-step contains two or more unknown conditional branch instruction

with branches of different length, we can try to recover the outcomes by comparing the
possible paths taken with our data. We can determine exactly where we landed by using
known branch locations and page faults to orient ourselves in the code. By using the
interrupt latency, we can have even more of an indication of our current position. We
can reduce the possible paths because we know the number of branches taken and the
number of instructions executed during the multi-step. If these constraints combine to
result in a single path, we can recover the branches’ outcomes. However, the likelihood
of a successful recovery from such a multi-step shrinks with the number of unknown
branches in the multi-stepped section. An increasing number of unknowns expands
the number of possible paths unconditionally and drastically increases the chance of
multiple combinations with the same length. We cannot recover the exact path if multiple
combinations of taken or not-taken branches can reach the same end point.
If a multi-step contains two or more unknown conditional branch instructions with

branches of identical length, we are guaranteed to have multiple valid paths to get to the
end goal. This means we cannot recover the exact branch outcomes without relying on
information from other sources. However, we know the exact location of the unknown
outcomes and how many conditions were true. We can use this information to reduce the
keyspace of a later bruteforce attack. Additionally, if two branches use different types
of instructions, we could still try to recover the exact path of the code. Some options
to infer more information about the execution are instruction latency, memory accesses,
or other performance counters (e.g., Div Op Count or Retired MMX/FP Instructions)
depending on the attack target.

The impact of multi-steps depends mainly on the exact implementation of the program.
Our implementation is designed to page-fault whenever our victim code calls a function.
This causes any multi-step to end and effectively acts as a synchronization point. Code
that frequently calls other functions is, therefore, straightforward to attack with this
method since the impact of a multi-step is minimal. Performance-optimized, concise code
without function calls, such as a string-comparison loop, is more challenging to attack
since it consists of few instructions. However, even with a multi-step, we can determine
how many iterations of the loop were successful before an early exit was triggered.
Since functions like secure byte- or string comparisons are explicitly written to avoid

branching, we cannot attack such constant-time code.

34

Chapter 5.

Evaluation

In this chapter, we present our experiments, and discuss the results.

5.1. Toy Example

1 .align 4096

2 .globl function_target_wrapper

3 function_target_wrapper: ; Wrapper function to terminate singlestepping

4 call r9 ; first 5 params already initialized

5 ret

6

7 .align 4096 ; align code to have it on its own page

8 .globl simple_branch_target

9 simple_branch_target:

10 cmp rdi , 0 ; rdi is provided by the caller

11 je jumptarget

12 nop ; NOPs added to have extra instructions in one path

13 nop

14 nop

15 jumptarget:

16 nop

17 ret

Listing 5.1: Sample victim code with a single branch instruction. The initial value of
rdi decides between two branches with different lengths.

As a first proof of concept, we attack a code snippet with a single conditional instruction.
We wrote the assembly code by hand and used the end2end example code in the SEV-Step
repository for this experiment. As our code requires a wrapper function to know when
it can terminate, we introduced a function to the SEV-Step victim code that takes a
function address in R9 and calls it, forwarding the other parameter registers as-is. We
also extended the HTTP communication so the attacker can pass parameters to victim
functions in order to avoid recompiling the victim code with every experiment. We used
this function to call our actual target functions. Our first target function is shown in
Listing 5.1.
Figure 5.1 shows a graphical representation of the recorded trace data. A symbol

on the respective line means that the corresponding branch retired or branch taken

35

Chapter 5. Evaluation

0 1 2 3 4 5 6 7 8

branch taken

branch retired

Single-steps

(a) Function called with RDI=0.

0 1 2 3 4 5 6 7 8

branch taken

branch retired

Single-steps

(b) Function called with RDI=1.

Figure 5.1.: Effect of data in RDI on the performance-counter trace. Branch events that
occurred during each single-step are marked on the corresponding line. The
red vertical line represents the end of the collected trace. Figure 5.1a shows
a taken branch at step 2, and ends earlier, while Figure 5.1b shows that the
branch was not taken, resulting in a longer trace.

event occurred at the marked step. The most noticeable difference between Figure 5.1a
and Figure 5.1b is that the Figure 5.1a is shorter. This is caused by the different number
of instructions in the two possible paths. In Figure 5.1a, the data shows a branch taken

event at the second single-step, which means we know that RDI was zero since this is
what influences the result of line 11 at Listing 5.1. Consequently, the victim jumps to line
15, skipping a few NOPs. We can verify this by counting the instructions. In Figure 5.1b,
we can see a branch retired at the second single-step, which lets us know that there
was a branching instruction. By checking the corresponding branch taken value, we can
find out that the branch was not taken, which tells us that the value in RDI was not zero.

As visible in both visualizations, the last single-step event is a taken branch instruction
for both code paths. This is the RET instruction in line 17 of Listing 5.1. The RET

instruction and other unconditional branch instructions line JMP or CALL show up in both
the Retired Taken Branch Instructions and Retired Branch Instructions performance
counters.

We could filter these unconditional jumps by observing the Retired Conditional Branch
Instructions (0x0D1) performance counter instead of Retired Branch Instructions. How-
ever, in our experiments, the noise in the data created by unconditional branches does
not negatively impact our ability to recover code paths. On the contrary, the known
branch instructions help us navigate the output files more quickly to find the parts that
contain the leaked data.

36

Chapter 5. Evaluation

5.2. 64-bit Square-and-Multiply in Assembly

1 ; RDI: m

2 ; RSI: exponent

3 ; RDX: modulus

4

5 .align 4096

6 .globl actual_squareandmultiply

7 actual_squareandmultiply:

8 nop

9 nop

10 mov rcx , rdx ; keep modulus in rcx for easier div

management

11 mov rdx , 0 ; zero rdx for multiplication

12 mov rax , rdi ; initialize result variable to rdi

13 mov r8 , rdi ; backup rdi for multiply

14

15 sam_repeat:

16 cmp rsi , 0 ; exponent is done

17 je sam_end

18 xor rdx , rdx

19 mul rax ; rdx:rax * rax , square

20 div rcx ; remainder in rdx

21 mov rax , rdx ; move remainder back to rax

22 mov rdi , rsi ; check for last bit

23 and rdi , 1

24 shr rsi , 1

25 cmp rdi , 1

26 jne sam_skip ; bit is 1 -> multiply

27 xor rdx , rdx ; zero rdx

28 mul r8 ; multiply with base

29 div rcx ; remainder in rdx

30 mov rax , rdx

31

32 sam_skip:

33 jmp sam_repeat

34

35 sam_end:

36 ret

Listing 5.2: Sample implementation of square-and-multiply in assembly, without bignum
support, which limits the size of the modulus to 64 bit. Line 26 leaks the key.

The square-and-multiply algorithm is a method for performing modular exponentiation
of large numbers. Therefore, it can be used to perform RSA operations. Other attacks
also target the conditional branch of Square-and-Multiply to leak the key (e.g., [45]), but
they are noisy and require multiple measurements.

Our example code for square-and-multiply can be found in Listing 5.2. Our implemen-
tation only supports numbers up to 64 bits so as not to require complex functions for
bignum operations. We call the function using the same wrapper as in Listing 5.1.

37

Chapter 5. Evaluation

0 2 4 6 8 10 12 14 16 18

branch taken

branch retired

Single-steps

(a) Loop iteration where the current bit is zero. The secret-dependent branch is indicated in red.

0 2 4 6 8 10 12 14 16 18

branch taken

branch retired

Single-steps

(b) Loop iteration where the current bit is zero. The secret-dependent branch is indicated in red.

0 2 4 6 8 10 12 14 16 18

branch taken

branch retired

Single-steps

(c) Last loop iteration

Figure 5.2.: Different types of traces in a square-and-multiply function. The je sam end

(line 17 in Listing 5.2) is aligned on step 2.

In this code, we use the two known branches (line 17 and line 33) as a reference to find
the instruction that leaks data. We know that we will hit the first branching instruction
8 cycles after getting our page fault in the victim function. By analyzing the assembly
code, we know that the exponent-dependent jump instruction happens 9 instructions
after the CPU does not take the jump to the end of the function. If the exponent’s least
significant bit was 1, the execution reaches the jump instruction of line 33 exactly 4
cycles later; if it were 0, it would jump again after the jne.
Figure 5.2 shows the three different possible traces that we get when single-stepping

Listing 5.2. In Figure 5.2a, the processed bit is zero, so the squaring part of the square-
and-multiply algorithm is skipped. This is visible via the branch information at step
11, and the length of the loop. Figure 5.2b shows the trace when the current bit is one.
This time, the victim does not take the branch, so it executes the additional squaring
instructions, which results in a longer loop iteration. The last instruction in both cases is
an unconditional JMP instruction, which always shows up in the trace as a taken branch.
Figure 5.2c shows the last iteration of the loop, where the exit condition is true. The last
instruction in that case, the RET instruction, also shows up as a taken branch. We recover
one bit of the exponent by monitoring the branch instruction at step 11. Additionally,

38

Chapter 5. Evaluation

we know how long the loop iteration is. This means we can easily find the branching
instruction again in the next iteration. We can recover the entire key by tracing all loop
iterations.
We ran this experiment with 32-bit exponents and 64-bit exponents. We need about

500 single-steps to recover a 32-bit exponent using this method. For 64-bit exponents, this
number rises to approximately 1000, with the exact number depending on the exponent.
We let the victim generate random exponents, which were then sent to the attacker to
verify the recovered key. Because this method was relatively fast for this experiment, we
did not implement recovery from multi-steps, opting to discard the data and start a new
run.

We were able to successfully single-step 64-bit exponentiations 242 out of 300 attempts.
We also traced 32-bit exponentiations in 866 out of 1000 attempts. When running without
multi-steps, we can recover the exponent 100% of the time. When multi-steps occur,
we can only recover key bits before to the multi-step and, if we know the length of the
key, the following bits. We know how many bits during the multi-step were 1. However,
since the distribution of zeroes and ones in a randomly generated private key is uniform,
this does not provide much information. However, we know the location and number of
unknown bits and can brute-force them if the amount of unknown bits is reasonably low.

5.3. 2048-bit Textbook RSA Decryption

To verify our attack with larger key sizes, we used the tiny-bignum-c library [36] and
a modified version of their RSA test case. We adapted the library to support up to
2048-bit numbers. As test data, we generated a private key and ciphertext, which the
program decrypts to display the encrypted message. The implementation of the victim
program is inspired by the latest experimental VM server released by Wilke et al. [78]
shortly before the development of this exploit. Since it has been shown before that it is
possible to find guest-physical addresses by behavioral analysis of the victim [41], we do
not consider this part of our attack.
When the program starts, it prints the guest-physical addresses of the wrapper and

target functions to the terminal and wait for input. The attacker program starts tracking
those pages, after which the victim performs its computation.

Most of the heavy computational work of the decryption is handled by library-provided
functions. The secret-dependent branching instruction that we use to leak the private
key is located at address rsa decrypt+8B in Figure 5.3.
The main loop of the minimal implementation discussed in Section 5.2 consisted of

16 instructions. When compiled, an iteration of the loop in pow mod faster consists of
45 instructions, or 33 if the current bit of the exponent is zero. This means that each
loop has 2 - 2.5 times more instructions than the previous experiment. Additionally,
the exponent at 2048 bits is 32 times larger than the 64-bit exponent of the previous
experiment. We used these numbers to estimate the expected number of instructions:

new instructions = old instructions ∗ 32 ∗ 2.25 = 72000

39

Chapter 5. Evaluation

1 // Adapted from https :// github.com/kokke/tiny -bignum -c/blob/

ac136565378c624365e0f5f556d386b3966bff32/tests/rsa.c

2 void pow_mod_faster(struct bn* a, struct bn* b, struct bn* n, struct bn*

res)

3 {

4 bignum_from_int(res , 1); /* r = 1 */

5 struct bn tmpa;

6 struct bn tmpb;

7 struct bn tmp;

8 bignum_assign (&tmpa , a);

9 bignum_assign (&tmpb , b);

10

11 while (1)

12 {

13 if (tmpb.array [0] & 1) /* if (b % 2) */

14 {

15 bignum_mul(res , &tmpa , &tmp); /* r = r * a % m */

16 bignum_mod (&tmp , n, res);

17 }

18 bignum_rshift (&tmpb , &tmp , 1); /* b /= 2 */

19 bignum_assign (&tmpb , &tmp);

20

21 if (bignum_is_zero (&tmpb))

22 break;

23

24 bignum_mul (&tmpa , &tmpa , &tmp);

25 bignum_mod (&tmp , n, &tmpa);

26 }

27 }

Listing 5.3: Implementation of textbook-RSA using tiny-bignum-c [36].

In our assembly implementation, we needed around 1000 single steps to trace the
whole program, with a success rate of approximately 70%. Assuming this value scales
linearly, the probability of single-stepping every instruction in this main loop is 0.7072 =
0.00000000000703.

Fortunately, the Instructions Retired performance counter shows how many instructions
were executed in a multi-step. As discussed in Chapter 4, we can use this information to
recover from accidental multi-steps.

However, in the case of our victim program, we have an even easier and more reliable
way to avoid data loss due to failed single-stepping. Looking at Figure 5.3, we can see
that multiple functions are called throughout each loop iteration. We track each function
call to turn off single-stepping when we do not need it. The page faults that trigger when
this happens act as a synchronization point and stop multi-steps.

We want to recover the condition at rsa decrypt+89. Considering the worst possible
case: The program returns from bignum mod at rsa decrypt+152 and immediately multi-
steps until the subsequent page fault stops it. This page fault occurs when bignum mul

40

Chapter 5. Evaluation

is called at rsa decrypt+A8. When we check which branch instructions are executed in
this section, notice the following:

1. jmp loc 5080 →branch retired = 1, branch taken = 1

2. jz short loc 50CD →branch retired = 2, branch taken = 1 + x

3. call bignum {mul,rshift} →branch retired = 3, branch taken = 2 + x

As we can see, in the entire section, only the result of the jz instruction is dynamic,
while every other instruction always increments both branch retired and branch taken.
We can therefore determine:

x = 1 ⇐⇒ branch retired = branch taken

We use equality as an indicator instead of assuming that the value must be 3 if x = 1
since we occasionally measured the values (2, 1) for our value pair after multistepping.
These strange value pairs appeared in clusters, and we theorize that the call instruction
that causes the page fault might not increment the performance counters before faulting
in some cases. However, using equality as an indicator mitigates this problem since
instructions will either increment all performance counters or none.

Because we have very fine-grained control over what is single-stepped, although limited
by the placement of the code in memory, we can afford to leave single-stepping disabled
for computationally heavy functions. Theoretically, this could be optimized even further
by single-stepping only the block between the two external functions containing the
conditional branch. However, we opted for a simpler method, allowing for better debugging
workflow since all steps in the target function are recorded. Using this method, we can
extract a full 2048-bit private key, without any bit errors, from a program running the
encryption inside a SEV-SNP virtual machine in around 4 minutes.

41

Chapter 5. Evaluation

Figure 5.3.: Disassembly of main decryption loop compiled from Listing 5.3.

42

Chapter 5. Evaluation

5.4. Mbed TLS RSA Key Recovery

1 for (;;) {

2 // ...

3 // ei contains the current bit of the exponent

4 if (ei == 0 && state == 1) {

5 MBEDTLS_MPI_CHK(mpi_select (&WW , W,

6 w_table_used_size , x_index));

7 mpi_montmul (&W[x_index], &WW, N, mm, &T);

8 continue;

9 }

10 state = 2;

11 nbits ++;

12 exponent_bits_in_window |= (ei << (window_bitsize - nbits));

13 if (nbits == window_bitsize) {

14 for (i = 0; i < window_bitsize; i++) {

15 MBEDTLS_MPI_CHK(mpi_select (&WW , W,

16 w_table_used_size , x_index));

17 mpi_montmul (&W[x_index], &WW, N, mm, &T);

18 }

19 MBEDTLS_MPI_CHK(mpi_select (&WW , W,

20 w_table_used_size , exponent_bits_in_window));

21 mpi_montmul (&W[x_index], &WW, N, mm, &T);

22 state --;

23 nbits = 0;

24 exponent_bits_in_window = 0;

25 }

26 // ...

27 }

Listing 5.4: Mbed TLS’ mbedtls mpi exp mod function. We can attack the branching
condition in Line 4.

We created a victim program using the Mbed TLS library (version 3.5.2) [44] to verify
the real-world applicability of CRACKPIPE. We configured the library with a window size
of 1, forcing it to use the square-and-multiply algorithm for exponentiation.
The relevant part of the mbedtls mpi exp mod function, which is used for modular

exponentiation, is shown in Listing 5.4. The basic principle of the attack is the same as
the attack in Section 5.3. The function loads the current bit of the exponent into the ei
variable. We attack the secret-dependent branching condition in line Line 4. Since we set
our window size to 1, compiler optimizations remove the branching conditions at Line 13
and Line 14. Even with these optimizations, the mbedtls mpi exp mod function is still
significantly more complex than our simple example code. There are multiple different
code paths containing various types of branching instructions. While function calls in
Section 5.3 are placed such that the resulting page faults synchronize any potential
multi-steps with only one unknown, secret-dependent branching condition between page
faults, this is not the case in Mbed TLS. As a result, when our trace contains multi-steps,

43

Chapter 5. Evaluation

0 5 10 15 20 25 30 35 40 45

page fault

branch taken

branch retired

Step

(a) ei = 0

0 5 10 15 20 25 30 35 40 45

page fault

taken

retired

Step

(b) ei = 1

Figure 5.4.: Event patterns for single iterations of the exponentiation loop. If ei is 0,
the attacked branch instruction in Step 20 is not taken. If ei is 1, the
attacked branch is taken, which later causes a pattern where mpi montmul

and mpi select are called without any branch instructions in between. This
sequence is used for reliable multi-step recovery.

we can not reliably isolate the effects of the secret-dependent branching instructions on
the Retired Taken Branch Instructions performance counter.
However, we can detect that ei is 1 via a special case in that code branch. The

MBEDTLS MPI CHK macro automatically checks function return values, and performs er-
ror handling. To do this, MBEDTLS MPI CHK adds additional branches after the func-
tion call. However, in Line 19, the mpi select function gets called directly after
mbedtls mpi exp mod, without any branching instructions between them. This is the
only instance in the machine code where mbedtls mpi exp mod and mpi select are
called without branching instructions between them, which means that detecting this
pattern is a reliable way of distinguishing the two branches that depend on ei.
With this technique, we can recover a full 4096-bit RSA private key without any bit

errors. We traced the signature process with 10 different private keys. We were able
to recover the key from each trace. Tracing a Mbed TLS decryption process requires
around 200.000 single-steps, which takes just over 7 minutes.

5.5. TOTP Brute Force Attack

In this case study, we show that common code patterns can be targeted to leak information
about the data inside a SEV-SNP virtual machine. As an example, we looked for a

44

Chapter 5. Evaluation

1 for (size_t i=0; i<data ->digits; i++)

2 {

3 if (key[i] != time_str[i])

4 return OTP_ERROR;

5 }

Listing 5.5: COTP token comparison code. key is the user-provided input, which is
compared to time str, containing the correct TOTP token. Line 3 exits
early if the comparison fails.

simple TOTP implementation written in C. We found the COTP library [66] and created
a small wrapper program around it. The wrapper program provides the library with a
hardcoded key, and uses the library-provided functions as shown in the documentation.
The attack does not depend on any particular flaw in the implementation of the program
using the library. Our victim program reads TOTP codes from the standard input and
verifies them using the totp verify function. This function generates a valid TOTP
token from the secret and compares it with the input.
However, this comparison is performed using a string-comparison loop with an early

exit, as shown in Listing 5.5. We can detect this early-exit condition using CRACKPIPE.
We can detect how many of our input characters were correct for every attempt. This
allows us to brute-force the token character-by-character, which reduces the average
number of brute-force attempts from 106/2 = 500.000 to 10·6/2 = 30.
To verify our attack, we implemented a script that connects to the victim via SSH.

The attacker script starts our trace generation tool and then types a token guess into the
victim program. The script immediately analyzes the generated trace, determining how
many loop iterations of the equality check were executed. Based on this information, the
script adjusts the next key guess.

With this strategy, we can perform 2 key guesses per second, which results in 60 guesses
in 30 seconds, the default expiration time of TOTPs. We are able to recover the correct
TOTP token within this timeframe 50 out of 50 times, with an average of 31.1 guesses
and an average runtime of 18.14 s per token.

45

Chapter 5. Evaluation

0 2 4 6 8 10 12 14 16 18 20 22 24 26

branch taken

branch retired

Single-steps

(a) TOTP check with 2 correct digits.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

branch taken

branch retired

Single-steps

(b) TOTP check with 3 correct digits.

Figure 5.5.: The TOTP verification trace forms a distinct pattern of 2 branch instruc-
tions per character, consisting of the length check and the early-exit. The
highlighted branch instruction leaks if the guessed TOTP character was
correct.

5.6. TOTP Secret Recovery

This case study shows how something as simple as an insecure key decoding algorithm
can compromise security. We use the same victim program as in Section 5.5. Instead of
the TOTP code, we target the secret in this attack.

The library decodes the Base32 encoded secret string to bytes to generate the TOTP
token using the otp byte secret function. Since Base32 encodes 5 bits of information
per character, the library decodes 8 characters at a time, resulting in 5 output bytes.
The code that performs this conversion is shown in ??.

The Base32 decoding algorithm uses the OTP DEFAULT BASE32 CHARS array as a lookup
table for Base32 encoding. The algorithm iterates through each character in a block and
determines the 5-bit value of each character by finding its position in the lookup table.
It does this by iterating through the list and comparing all lookup table entries to the
current character. Utilizing CRACKPIPE, we can identify when the loop’s exit condition
is true and reconstruct the character. Following the code flow back to the lookup table
loop allows us to reconstruct all Base32-encoded characters of the TOTP secret.

Because the critical code section does not cause any page faults, multi-steps cannot be
caught. Therefore, we cannot recover the full secret key if a multi-step spans multiple
characters. In our experiments, we recover the secret key in 75 out of 86 cases.

The issue stems from a flawed implementation of Base32 decoding. However, it should
be noted that when searching GitHub, multiple TOTP implementations have the same
flaw [63, 30]. Other implementations do not leak the entire secret, but instead let us
recover information about whether each character in the secret is a letter or a digit [22,

46

Chapter 5. Evaluation

1 static const char OTP_DEFAULT_BASE32_CHARS [32] = {

2 ’A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,’N’,’O’,’P’,

3 ’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’,’2’,’3’,’4’,’5’,’6’,’7’

4 };

5

6 COTPRESULT otp_byte_secret(OTPData* data , char* out_str)

7 {

8 //...

9 for (size_t i = 0; i < num_blocks; i++) {

10 unsigned int block_values [8] = { 0 };

11 for (int j = 0; j < 8; j++) {

12 char c = data ->base32_secret[i * 8 + j];

13 int found = 0;

14 for (int k = 0; k < 32; k++) {

15 if (c == OTP_DEFAULT_BASE32_CHARS[k]) {

16 block_values[j] = k;

17 found = 1;

18 break;

19 }

20 }

21 //...

22 }

23 //...

24 }

25

26 return OTP_OK;

27 }

Listing 5.6: COTP otp byte secret Base32 decoding algorithm. The early-exit
condition at line 15 leaks the TOTP secret.

57, 20, 54]. Additionally, when searching for Base64 decoding libraries in C, we can find
multiple cases where the full encoded data is recoverable [75] or where the algorithm
leaks information about character classes [55, 34]. Although those implementations were
not originally intended for trusted execution, it is possible that similar implementations
may exist as parts of other projects.
We also checked the default implementations for current versions of node.js, Go,

Python, and Rust. All of the implementations make use of a dedicated Base64 decoding
table, where invalid entries are mapped to a known value for error checking. This
approach makes it impossible to recover the encoded data using CRACKPIPE. However,
the translation tables might be vulnerable to cache attacks, similar to AES T-Tables.

47

Chapter 5. Evaluation

0 5 10 15 20 25 30

branch taken

branch retired

Step

(a) Base32 character is D

0 5 10 15 20 25 30

branch taken

branch retired

Step

(b) Base32 character is E

Figure 5.6.: Event trace for the base32 decoder of the COTP library. Each loop iteration
appears as two branches. The first branch is taken until the input charac-
ter matches OTP DEFAULT BASE32 CHARS[k]. Therefore, the current base32
character can directly be derived from the number of taken branches.

48

Chapter 6.

Discussion

In this chapter, we discuss the scope of the CRACKPIPE attack. We estimate the impact
across common software stacks. Finally, we present possible defenses.

6.1. Attack Scope

As we showed in Chapter 5, CRACKPIPE can recover the execution path through a program.
The severity of this attack depends on the target application. Any secret-dependent branch
in the code leaks information about the secret. It is possible to harden cryptographic
functions and implement them as constant-time code, preventing attacks like the one
shown in Section 5.3. However, this often requires manual assembly implementations
and careful choices of functions, leading to increased development- and execution time.
Modern cryptographic libraries usually implement constant-time functionality already.
The CRACKPIPE attack can leak any data used to decide branching conditions. SEV

is supposed to allow for trusted cloud computing, meaning that all private data, not
only private keys, is safe even from the hypervisor. However, with CRACKPIPE, any code
touching private data would have to be constant-time code for the data to be secure.
As shown by Lipp et al. [45], it is possible to use power analysis to extract similar data
about code paths from an SGX enclave. Therefore, SGX enclaves must use constant-time
code to avoid leaking secrets. This is feasible when considering a small TEE like an SGX
enclave, but in SEV, the TEE is the entire virtual machine. SGX forces users to carefully
consider which parts to include in the enclave and which data is safe for the host to see.
If a secure connection to a server is needed, the user has to implement an encrypted
channel starting from the enclave. The whole concept of SGX makes this evident to users
- anything outside the enclave is visible to the host.

With SEV, the entire virtual machine is supposed to be encrypted and secure from
the outside world. However, AMD states specifically that SEV-SNP does not protect
against microarchitectural side channels. They state that, as with standard software
security practices, code which is sensitive to such side-channel attacks (e.g., cryptographic
libraries) should be written in a way that prevents such attacks [6].

While hardened cryptographic libraries can protect the processed data and keys while
encrypting and decrypting, all parts of the virtual machine that are not explicitly written
in constant-time code are susceptible to the CRACKPIPE attack.

49

Chapter 6. Discussion

Every piece of code that handles sensitive data can accidentally leak information about
it. This may include the program itself, any other tools installed on the server, an entire
web stack, and the whole Linux kernel. Most of these tools were not developed with
microarchitectural side-channel protection in mind, since, in a classical scenario, the
hypervisor can access all the guest data by design. SEV introduces a new scenario where
code has to be protected even from privileged attackers. However, most software does
not need consider such attacks and is not designed to protect against them.

AMD states that no fingerprinting attack protection is implemented in SEV-SNP. They
say that while fingerprinting can sometimes provide information about the code being
run inside a VM, typically the most sensitive information is the data itself (e.g., data in
the database), not the code being run (e.g., which version of the database software is
being used [6]).
As we have shown in this thesis, this statement is not correct. By monitoring per-

formance counters and access patterns, we can leak information about the data itself.
Common functions like strcmp leak the length of the patching part of the strings. When
one of the inputs is user-controllable, we can recover the other input string of strcmp
character by character, similar to the attack shown in Section 5.5. Especially when
handling long strings, the early-exit condition can greatly impact performance. In a
performance-optimized system, such leaking conditions will most likely be present in
many code paths. For example, compilers may use nested branches instead of jump-tables
when compiling switch-case statements, depending on the possible outcomes. If the
hypervisor has a way to trigger these code paths, for example, via a network request,
it could extract arbitrary data using this technique. This is a direct contradiction to
AMD’s statement.

6.2. Impact

AMD states that code sensitive to side-channel attacks should be written in a way that
prevents such attacks [6]. However, as we show in this work, protecting cryptographic
operations is insufficient if other parts of the system leak unencrypted data. This means
that guest owners must audit their entire software stack to avoid leaks or write their own
from scratch.
We present a few estimations on how much effort would go into such a task. Let us

assume that a developer can audit 200 lines of code per workday or 25 per hour. We
also estimate that around 80 % of the code can be ignored since it is irrelevant, unused,
or does not touch sensitive data. Remember that these are very coarse estimations to
understand the order of magnitude of such a task. We obtained the number of lines of
code by running the cloc utility 1 on the latest main branch of the respective repository.

1https://github.com/AlDanial/cloc

50

https://github.com/AlDanial/cloc

Chapter 6. Discussion

Example 1: Linux

Linux alone is estimated to have 25 to 30 million lines of code. To account for the large
number of architectures and drivers included in the code, we use 10 million as a baseline.
A single developer reviewing 200 lines of code while skipping over 80 % of code (as it is
still irrelevant) would need 10,000 person-days or just over 27 person-years to ensure the
entire kernel is secure.

Example 2: Website with Database

For this case, we consider a fairly standard web stack. We use nginx as a reverse proxy,
node.js as runtime, and a MariaDB database.

Software Approximate lines of code Days to review years to review

nginx 200,000 200 0.55
node.js 8,000,000 8,000 21.92
MariaDB 2,000,000 2,000 5.48

total 10,200,000 10,200 27.95

Table 6.1.: Estimation for required effort to audit a website stack with database.

Example 3: File Server

In this case, we look at a file server running Samba and nextcloud to provide file storage
for a company, and runs automated backups using borg. We do not include the time
required to audit the web stack of any web interface in this estimation.

Software Approximate lines of code Days to review Years to review

Samba 3,000,000 3,000 8.22
nextcloud 1,000,000 1,000 2.74
borg 60,000 60 0.16

total 4,060,000 4,060 11.12

Table 6.2.: Estimation for required effort to audit file server software.

As we show in Table 6.1 and Table 6.2, auditing the entire technology stack necessary to
run a modern web application or file server would each take around 20,000 person-hours
or almost 50 person-years. While such an effort is not impossible for a large company in
the long run, it would still require a significant amount of time until the entire application
stack is audited and patched. However, software-side protections would likely slow down
the whole technology stack and would be criticized by users prioritizing performance over
security.

51

Chapter 6. Discussion

6.3. Defenses

CRACKPIPE uses legitimate CPU performance counters and infers information from their
values. Combined with single-stepping and page tracking, they allow us to get instruction-
level branch information. The entire attack does not use bugs or side effects of CPU
instructions. Other architectures solve this problem in different ways.
On Intel CPUs, performance counters are disabled when an enclave is running in

production mode. Although this does not prevent attackers from single-stepping the
enclave and obtaining some information through side channels like page faults [80] or
interrupt latencies [69], it forces them to use less reliable measurements for their attacks.
ARM’s TrustZone requires a secure monitor that resides on a hierarchically higher

level than the Normal World and Secure World in its architecture. The secure monitor
performs the world switch when triggered through a mechanism similar to syscalls. While
the “host operating system” has more control over the hardware than guest operating
systems, it can only control guests via calls to the secure monitor. Modifications to
the secure monitors are prevented through integrity checks. However, an attack is still
possible if a guest or host finds a vulnerability in the secure monitor and obtains code
execution at its permission level.

While CRACKPIPE only works on non-constant-time code, as discussed before, converting
all code that might touch sensitive data to constant-time is not feasible. Therefore, we
discuss how CRACKPIPE can be mitigated.

6.3.1. Disabling Performance Counters

The most apparent mitigation for this attack is turning off all performance counters
while an SEV virtual machine is running. This solution would mitigate CRACKPIPE

and drastically reduce the reliability of SEV-Step. Detecting multi-steps would be
significantly more challenging and relying on side channels. Recovery from a multi-step
would most likely be infeasible because attackers would not know the number of executed
instructions. Turning off performance counters entirely (possibly via a guest policy) is
the best protection for a guest against CRACKPIPE and other single-stepping attacks.

However, in a shared cloud hosting environment, hosting providers may need to know
about usage statistics for load-balancing and billing purposes and to protect against
attacks from a guest. Performance counters are a common way to mitigate side-channel
attacks [13, 21, 47, 2]. While there are no attacks from an SEV guest to a hypervisor
published at the time of writing, hiding all performance counter information from the
hypervisor may hinder future mitigation development if such an attack is found.

Additionally, a cloud provider may use performance counters to detect activity which
is against the terms of service. For example, some providers do not allow crypto mining
in some cases [26, 48, 3]. Even in an encrypted machine, such activities are detectable
using performance counters [46, 65].

Therefore, turning off performance counters is a trade-off between the security of the
guest from a malicious hypervisor, security from a malicious guest, and the provider’s
ability to monitor activity on their systems.

52

Chapter 6. Discussion

6.3.2. Detection through Instruction Delays

Single-stepping introduces significant delays to the execution of a program. The guest can
measure this delay using the Timestamp Counter (TSC). To do this securely, the guest
must enable the Secure TSC feature via the SEV FEATURES MSR. When this feature is
disabled, the hypervisor can specify an offset, which will be added to the TSC whenever
the guest tries to read it. A malicious hypervisor could use this offset to hide the
single-stepping delays from the guest. With the Secure TSC feature enabled, the offset is
ignored, and the guest can obtain unmodified timing data.

The guest can use this reliable timing data for single-step detections. Chen et al. [17]
introduce Déjà Vu, a framework that detects attacks on an enclave by measuring the
execution time of basic blocks. If the measured time does not match with previously
generated training data, the enclave is notified of the potential attack and can react
accordingly. Their framework includes a static analysis tool to automatically find and
measure basic blocks.

However, splitting all executable code into basic blocks is not feasible when running an
entire virtual machine. Instead, developers could place checkpoints throughout critical
sections of the code, which record the time taken between them. If multiple checkpoints
report abnormally high delays between each other, the program can assume it is being
single-stepped and handle it accordingly. Similar strategies have been used to detect
security-critical properties like hyperthread co-location [16], interrupts [15] throughout
the execution of SGX enclave.

A possibility is to instrument the compiler to place such checkpoints randomly through-
out the code. While it is likely that the attacker could trick the checkpoints, given
knowledge of their positions in the code, this protection would likely trigger in the
data-gathering phase before the actual exploit is run. However, depending on the den-
sity of the checkpoints, there would be some performance overhead. Additionally, this
strategy does not mitigate CRACKPIPE when secrets can be recovered by distinguishing
total performance counter values between page faults, as described in Section 5.3 and
Section 5.4.

53

Chapter 7.

Conclusion

In this thesis, we identified an attack surface of AMD SEV that has not been exploited
in published works before. We have shown how malicious cloud providers can reliably
monitor performance counters to break the confidentiality of SEV-SNP protected VMs.
To the best of our knowledge, this represents the only attack that leverages information
gained from observing performance counters to break the confidentiality guarantees in
the AMD SEV-SNP security architecture. We have proven that this attack vector is
realistic and practical with full key recovery PoC attacks against RSA. Even though
AMD states that performance counters only leak information about the running code, we
have provided evidence that this is not always the case. We have shown that CRACKPIPE
is not limited to cryptographic primitives, but enables other types of data leaks as well.
We have exploited branching conditions such as early exits in fundamental programming
constructs such as string comparisons, and shown their relevance for leaking secret data
out of AMD SEV-SNP protected VMs.
We proposed possible mitigations for this issue. However, they all come with their

tradeoffs, ranging from performance impacts, even for non-SEV users, to impacting
the hosting provider’s ability to protect themselves from malicious guests. The most
realistic solution to this issue is the restriction of critical performance counters when
an SEV-enabled virtual machine is active. However, determining which performance
counters to disable is not a trivial task. While leaks by performance counters like Retired
Branch Instruction Taken are pretty obvious, other counters might leak data more
indirectly. Therefore, much more work must be done to harden SEV virtual machines
against performance counter side channels.

In conclusion, our work provides additional evidence that outsourcing sensitive compu-
tations to untrusted cloud providers, with the presence of an untrusted hypervisor, creates
new and unexpected attack surfaces. Previously irrelevant functionality can suddenly lead
to new side-channel primitives. This thesis serves as a reminder that security assumptions
must be re-evaluated when fundamental computing principles change.

Future Work Possible future work includes the detailed evaluation of other performance
counters and possible data leaks they create. Furthermore, the Linux kernel is not designed
to defend against malicious hypervisors. Defense against side-channels when operating in
a virtual machine is not a priority. Therefore, more attack surfaces that can be used to
leak data may exist in the kernel. When controlling the exact timing of interrupts and
the contents of all IO operations, the hypervisor could precisely target any race condition

54

Chapter 7. Conclusion

in the kernel. This could lead to high success probabilities in attacks that previously
were almost impossible due to the precise timing required.

55

Bibliography

[1] National Security Agency. Ghidra. 2024. url: https://ghidra-sre.org/.

[2] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and Sourangshu
Bhattacharya. “Performance counters to rescue: A machine learning based safeguard
against micro-architectural side-channel-attacks”. In: Cryptology ePrint Archive
(2017).

[3] Amazon. AWS Free Tier Terms. 2018. url: https://aws.amazon.com/free/
terms.

[4] AMD. AMD Secure Encryption Virtualization (SEV) Information Disclosure. 2021.
url: https://www.amd.com/en/resources/product-security/bulletin/amd-
sb-1013.html.

[5] AMD. Processor Programming Reference. Rev. 0.50. May 2021. url: https://www.
amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-

references/55898_B1_pub_0_50.zip.

[6] AMD. Strengthening VM isolation with integrity protection and more. 2020.

[7] AMD. “System Programming”. In: AMD64 Architecture Programmer’s Manual 2
(2023), pp. 497–619.

[8] Thomas W. Barr, Alan L. Cox, and Scott Rixner. “SpecTLB: a mechanism for
speculative address translation”. In: ISCA. 2011.

[9] Dan Boneh, Richard A DeMillo, and Richard J Lipton. “On the importance of
checking cryptographic protocols for faults”. In: EUROCRYPT. 1997.

[10] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and
Michael Schwarz. “ÆPIC Leak: Architecturally Leaking Uninitialized Data from
the Microarchitecture”. In: USENIX Security Symposium. 2022.

[11] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan
Capkun, and Ahmad-Reza Sadeghi. “Software grand exposure: SGX cache attacks
are practical”. In: WOOT. 2017.

[12] Robert Buhren, Hans-Niklas Jacob, Thilo Krachenfels, and Jean-Pierre Seifert.
“One glitch to rule them all: Fault injection attacks against amd’s secure encrypted
virtualization”. In: CCS. 2021.

[13] Stefano Carnà, Serena Ferracci, Francesco Quaglia, and Alessandro Pellegrini.
“Fight Hardware with Hardware: Systemwide Detection and Mitigation of Side-
channel Attacks Using Performance Counters”. In: Digital Threats: Research and
Practice 4.1 (2023).

56

https://ghidra-sre.org/
https://aws.amazon.com/free/terms
https://aws.amazon.com/free/terms
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1013.html
https://www.amd.com/en/resources/product-security/bulletin/amd-sb-1013.html
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55898_B1_pub_0_50.zip
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55898_B1_pub_0_50.zip
https://www.amd.com/content/dam/amd/en/documents/epyc-technical-docs/programmer-references/55898_B1_pub_0_50.zip

Bibliography

[14] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. “Sgxpectre: Stealing intel secrets from sgx enclaves via speculative
execution”. In: EuroS&P. 2019.

[15] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang. “Defeating
Speculative-Execution Attacks on SGX with HyperRace”. In: DSC. 2019.

[16] Guoxing Chen, Wenhao Wang, Tianyu Chen, Sanchuan Chen, Yinqian Zhang,
XiaoFeng Wang, Ten-Hwang Lai, and Dongdai Lin. “Racing in Hyperspace: Closing
Hyper-Threading Side Channels on SGX with Contrived Data Races”. In: S&P.
2018.

[17] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang. “Detecting
privileged side-channel attacks in shielded execution with Déjá Vu”. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security.
2017.

[18] Victor Costan and Srinivas Devadas. “Intel SGX explained”. In: Cryptology ePrint
Archive (2016).

[19] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. “Cachequote: Efficiently recovering
long-term secrets of SGX EPID via cache attacks”. In: CHES (2018).

[20] Francis Davidson. GitHub – Theldus/Tiny2FA: A small C library that implements
TOTP, compatible with Google Authenticator. 2023. url: https://github.com/
Theldus/Tiny2FA.

[21] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang, Adam Waksman,
Simha Sethumadhavan, and Salvatore Stolfo. “On the feasibility of online malware
detection with performance counters”. In: ACM SIGARCH computer architecture
news (2013).

[22] drweasel. GitHub – drweasel/totp: Basic C++ TOTP implementation based on
libsodium. 2023. url: https://github.com/drweasel/totp.

[23] Zhao-Hui Du, Zhiwei Ying, Zhenke Ma, Yufei Mai, Phoebe Wang, Jesse Liu, and
Jesse Fang. Secure Encrypted Virtualization is Unsecure. 2017.

[24] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry
Ponomarev. “BranchScope: A New Side-Channel Attack on Directional Branch
Predictor”. In: ASPLOS. 2018.

[25] Agner Fog. “The microarchitecture of Intel, AMD and VIA CPUs”. In: An optimiza-
tion guide for assembly programmers and compiler makers. Copenhagen University
College of Engineering (2023).

[26] Google. Google Cloud Platform Terms of Service. 2024. url: https://cloud.
google.com/terms.

[27] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller. “Cache
attacks on Intel SGX”. In: EuroSys. 2017.

57

https://github.com/Theldus/Tiny2FA
https://github.com/Theldus/Tiny2FA
https://github.com/drweasel/totp
https://cloud.google.com/terms
https://cloud.google.com/terms

Bibliography

[28] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. “Flush+
Flush: a fast and stealthy cache attack”. In: DIMVA. 2016.

[29] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. “Cache template attacks: Au-
tomating attacks on inclusive Last-Level caches”. In: USENIX Security Symposium.
2015.

[30] gurushida. GitHub – gurushida/totp: A C program to generate 6 digit TOTP codes
like Google Authenticator. 2019. url: https://github.com/gurushida/totp.

[31] Felicitas Hetzelt and Robert Buhren. “Security analysis of encrypted virtual ma-
chines”. In: ACM SIGPLAN Notices (2017).

[32] Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai,
and Mingshu Li. “Bluethunder: A 2-level directional predictor based side-channel
attack against SGX”. In: CHES (2020).

[33] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryption. 2016.

[34] Tomas Kislan. GitHub – tkislan/base64: Base64 encoding and decoding for C++
projects. 2020. url: https://github.com/tkislan/base64.

[35] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. “Spectre Attacks: Exploiting Speculative Execution”. In: S&P.
2019.

[36] kokke. tiny-bignum-c. 2022. url: https://github.com/kokke/tiny-bignum-c.

[37] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. “Spectre Returns! Speculation Attacks using the Return Stack
Buffer”. In: WOOT. 2018.

[38] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus
Peinado. Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch
Shadowing. 2017. eprint: 1611.06952.

[39] Mengyuan Li, Luca Wilke, Jan Wichelmann, Thomas Eisenbarth, Radu Teodorescu,
and Yinqian Zhang. “A systematic look at ciphertext side channels on AMD SEV-
SNP”. In: S&P. 2022.

[40] Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. “Crossline: Breaking ”security-by-
crash” based memory isolation in amd sev”. In: CCS. 2021.

[41] Mengyuan Li, Yinqian Zhang, Zhiqiang Lin, and Yan Solihin. “Exploiting Unpro-
tected I/O Operations in AMD’s Secure Encrypted Virtualization”. In: USENIX
Security Symposium. 2019.

[42] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. “CI-
PHERLEAKS: Breaking Constant-time Cryptography on AMD SEV via the Ci-
phertext Side Channel”. In: USENIX Security Symposium. 2021.

[43] Mengyuan Li, Yinqian Zhang, Huibo Wang, Kang Li, and Yueqiang Cheng. “TLB
Poisoning Attacks on AMD Secure Encrypted Virtualization”. In: ACSA. 2021.

58

https://github.com/gurushida/totp
https://github.com/tkislan/base64
https://github.com/kokke/tiny-bignum-c
1611.06952

Bibliography

[44] Linaro. MBed TLS. 2024. url: https://www.trustedfirmware.org/projects/
mbed-tls/.

[45] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. “PLATYPUS: Software-based power side-
channel attacks on x86”. In: S&P. 2021.

[46] Ganapathy Mani, Vikram Pasumarti, Bharat Bhargava, Faisal Tariq Vora, James
MacDonald, Justin King, and Jason Kobes. “Decrypto pro: Deep learning based
cryptomining malware detection using performance counters”. In: Autonomic
Computing and Self-Organizing Systems (ACSOS). 2020.

[47] Robert Martin, John Demme, and Simha Sethumadhavan. “Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate side-channel
attacks”. In: ACM SIGARCH computer architecture news (2012).

[48] Microsoft. Azure Free Trial — Microsoft Azure. 2024. url: https://azure.
microsoft.com/en-us/pricing/offers/ms-azr-0044p/.

[49] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. “Cachezoom: How SGX
amplifies the power of cache attacks”. In: CHES. 2017.

[50] Daniel Moghimi, Jo Van Bulck, Nadia Heninger, Frank Piessens, and Berk Sunar.
“CopyCat: Controlled Instruction-Level Attacks on Enclaves”. In: USENIX Security
Symposium. 2020.

[51] Mathias Morbitzer, Manuel Huber, Julian Horsch, and Sascha Wessel. “Severed:
Subverting AMD’s virtual machine encryption”. In: EuroSys. 2018.

[52] Gal Motika and Shlomo Weiss. “Virtio network paravirtualization driver: Imple-
mentation and performance of a de-facto standard”. In: Computer Standards &
Interfaces (2012).

[53] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel Gruss, and
Frank Piessens. “Plundervolt: Software-based fault injection attacks against Intel
SGX”. In: S&P. 2020.

[54] Minus Nolldag. GitHub – minusnolldag/totp: TOTP implementation in C. 2022.
url: https://github.com/minusnolldag/totp.

[55] Rene Nyffenegger. GitHub – ReneNyffenegger/cpp-base64: base64 encoding and
decoding with c++. 2022. url: https://github.com/ReneNyffenegger/cpp-
base64.

[56] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache attacks and countermea-
sures: the case of AES”. In: CT-RSA. 2006.

[57] patzol768. GitHub – patzol768/cpp-otp: A One Time Password (OTP) library in
C++, with QR code generation. 2023. url: https://github.com/patzol768/cpp-
otp.

[58] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Crosstalk: Speculative data leaks across cores are real”. In: S&P. 2021.

59

https://www.trustedfirmware.org/projects/mbed-tls/
https://www.trustedfirmware.org/projects/mbed-tls/
https://azure.microsoft.com/en-us/pricing/offers/ms-azr-0044p/
https://azure.microsoft.com/en-us/pricing/offers/ms-azr-0044p/
https://github.com/minusnolldag/totp
https://github.com/ReneNyffenegger/cpp-base64
https://github.com/ReneNyffenegger/cpp-base64
https://github.com/patzol768/cpp-otp
https://github.com/patzol768/cpp-otp

Bibliography

[59] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. “Return-
oriented programming: Systems, languages, and applications”. In: ACM Transac-
tions on Information and System Security (TISSEC) (2012).

[60] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Stecklina,
Thomas Prescher, and Daniel Gruss. “ZombieLoad: Cross-privilege-boundary data
sampling”. In: CCS. 2019.

[61] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. “Malware guard extension: Using SGX to conceal cache attacks”. In:
DIMVA. 2017.

[62] Michael Steil. “Inside VMware”. In: 2006. url: https://fahrplan.events.ccc.
de/congress/2006/Fahrplan/attachments/1132-InsideVMware.pdf.

[63] Paolo Stivanin. GitHub – paolostivanin/libcotp: C library that generates TOTP and
HOTP according to RFC-6238. 2023. url: https://github.com/paolostivanin/
libcotp.

[64] Geoffrey Strongin. “Trusted computing using AMD “Pacifica” and “Presidio” secure
virtual machine technology”. In: Information Security Technical Report (2005).

[65] Rashid Tahir, Muhammad Huzaifa, Anupam Das, Mohammad Ahmad, Carl Gunter,
Fareed Zaffar, Matthew Caesar, and Nikita Borisov. “Mining on someone else’s
dime: Mitigating covert mining operations in clouds and enterprises”. In: RAID.
2017.

[66] Cody Tilkins. GitHub – tilkinsc/COTP: A simple One Time Password (OTP)
library in C, supports C++. 2023. url: https://github.com/tilkinsc/COTP.

[67] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando CM Martins,
Andrew V Anderson, Steven M Bennett, Alain Kagi, Felix H Leung, and Larry
Smith. “Intel virtualization technology”. In: Computer 38.5 (2005), pp. 48–56.

[68] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
“Foreshadow: Extracting the keys to the intel SGX kingdom with transient Out-of-
Order execution”. In: USENIX Security Symposium. 2018.

[69] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “Nemesis: Studying microarchi-
tectural timing leaks in rudimentary CPU interrupt logic”. In: CCS. 2018.

[70] Jo Van Bulck, Frank Piessens, and Raoul Strackx. “SGX-Step: A Practical Attack
Framework for Precise Enclave Execution Control”. In: SysTEX. 2017.

[71] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank Piessens, and Raoul
Strackx. “Telling your secrets without page faults: Stealthy page Table-Based
attacks on enclaved execution”. In: USENIX Security Symposium. 2017.

[72] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. “RIDL: Rogue
in-flight data load”. In: S&P. 2019.

60

https://fahrplan.events.ccc.de/congress/2006/Fahrplan/attachments/1132-InsideVMware.pdf
https://fahrplan.events.ccc.de/congress/2006/Fahrplan/attachments/1132-InsideVMware.pdf
https://github.com/paolostivanin/libcotp
https://github.com/paolostivanin/libcotp
https://github.com/tilkinsc/COTP

Bibliography

[73] Wubing Wang, Mengyuan Li, Yinqian Zhang, and Zhiqiang Lin. “PwrLeak: Ex-
ploiting Power Reporting Interface for Side-Channel Attacks on AMD SEV”. In:
DIMVA. 2023.

[74] Samuel Weiser, Raphael Spreitzer, and Lukas Bodner. “Single trace attack against
RSA key generation in Intel SGX SSL”. In: AsiaCCS. 2018.

[75] Joseph Werle. GitHub – jwerle/b64.c: Base64 encode/decode. 2023. url: https:
//github.com/jwerle/b64.c.

[76] Jan Werner, Joshua Mason, Manos Antonakakis, Michalis Polychronakis, and
Fabian Monrose. “The severest of them all: Inference attacks against secure virtual
enclaves”. In: AsiaCCS. 2019.

[77] Luca Wilke, Jan Wichelmann, Mathias Morbitzer, and Thomas Eisenbarth. “Se-
vurity: No security without integrity: Breaking integrity-free memory encryption
with minimal assumptions”. In: S&P. 2020.

[78] Luca Wilke, Jan Wichelmann, Anja Rabich, and Thomas Eisenbarth. “SEV-Step
A Single-Stepping Framework for AMD-SEV”. In: CHES (2023).

[79] Luca Wilke, Jan Wichelmann, Florian Sieck, and Thomas Eisenbarth. “undeserved
trust: Exploiting permutation-agnostic remote attestation”. In: Security and Privacy
Workshops. 2021.

[80] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. “Controlled-channel attacks:
Deterministic side channels for untrusted operating systems”. In: S&P. 2015.

[81] Yuval Yarom and Katrina Falkner. “FLUSH+ RELOAD: A high resolution, low
noise, l3 cache Side-Channel attack”. In: USENIX Security Symposium. 2014.

[82] Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich, Youheng Lü, Andreas
Kogler, and Michael Schwarz. “CacheWarp: Software-based Fault Injection using
Selective State Reset”. In: USENIX Security Symposium. 2023.

61

https://github.com/jwerle/b64.c
https://github.com/jwerle/b64.c

62

Appendix A. Code listings

Appendix A.

Code listings

1 /**

2 * __svm_sev_es_vcpu_run - Run a SEV -ES vCPU via a transition to SVM

guest mode

3 * @vmcb_pa: unsigned long

4 */

5 SYM_FUNC_START(__svm_sev_es_vcpu_run)

6 push %_ASM_BP

7 #ifdef CONFIG_X86_64

8 push %r15

9 push %r14

10 push %r13

11 push %r12

12 #else

13 push %edi

14 push %esi

15 #endif

16 push %_ASM_BX

17

18 /* Move @vmcb to RAX. */

19 mov %_ASM_ARG1 , %_ASM_AX

20

21 /* Enter guest mode */

22 sti

23

24 1: vmrun %_ASM_AX

25

26 2: cli

27

28 pop %_ASM_BX

29

30 #ifdef CONFIG_X86_64

31 pop %r12

32 pop %r13

33 pop %r14

34 pop %r15

35 #else

36 pop %esi

37 pop %edi

38 #endif

39 pop %_ASM_BP

40 RET

41

42 3: cmpb $0 , kvm_rebooting

43 jne 2b

44 ud2

45 _ASM_EXTABLE (1b, 3b)

46 SYM_FUNC_END(__svm_sev_es_vcpu_run)

Listing A.1: Linux 5.19 guest entry code (truncated).

63

	Introduction
	Motivation
	Structure of this Document

	Background
	Virtualization
	Software Guard Extensions (SGX)
	Secure Virtual Machine (SVM)
	Basic Operation
	Nested Paging

	Secure Memory Encryption (SME)
	Secure Virtual Machine (SEV)
	Encrypted State (ES)
	Secure Nested Paging (SNP)
	Existing Attacks on SEV
	Register-Based Attacks
	Memory-based Attacks
	Other attacks

	SEV-Step
	Communication between kernel- and userspace
	Supported functionality

	Attack Primitives
	Page-Fault Tracking
	Single-Stepping
	Timing Analysis
	Performance Counters

	Implementation
	Single-Stepping
	Performance Counters
	The CRACKPIPE Attack
	Gathering Traces
	Recovering secrets

	Evaluation
	Toy Example
	64-bit Square-and-Multiply in Assembly
	2048-bit Textbook RSA Decryption
	Mbed TLS RSA Key Recovery
	TOTP Brute Force Attack
	TOTP Secret Recovery

	Discussion
	Attack Scope
	Impact
	Defenses
	Disabling Performance Counters
	Detection through Instruction Delays

	Conclusion
	Bibliography
	Code listings

